
©2015 Prometheus Consulting
Document Revision: Revision: 1

MaduraWorkflowUI

User Guide

©2015 Prometheus Consulting
Document Revision: Revision: 1

©2015 Prometheus Consulting
User Guide madura-workflow-ui-1.0.1

- (3) -

Table of Contents

1.Change Log... 5

2.References... 6

3.What is this?.. 7
3.1.What do you mean: Workflow?... 7
3.2.So what does this do?.. 7
3.3.Running the application.. 7

4.The UI... 17
4.1.Vaadin and Madura Vaadin Support.. 17
4.2.Security... 17
4.3.Spring Framework.. 17
4.4.Scheduler... 18

5.Workflow Bundles... 19
5.1.Bundle Configuration.. 19
5.2.Bundled Forms... 21
5.3.Bundle contents.. 23

6.Database.. 25
6.1.Workflow Database.. 25
6.2.Bundled Databases.. 27

7.Locking.. 29

8.JMX... 30

9.Configuring for Production.. 31

10.Building Your Own.. 32

A.License.. 33

B.Release Notes... 34

©2015 Prometheus Consulting
User Guide madura-workflow-ui-1.0.1

- (4) -

©2015 Prometheus Consulting
User Guide madura-workflow-ui-1.0.1

- 5 -

1. Change Log

©2015 Prometheus Consulting
User Guide madura-workflow-ui-1.0.1

- 6 -

2. References
[1] Weblogic JNDI

[2] Spring Security

[3] Atomikos

[4] Tomcat

[5] H2

[6] Vaadin

[7] Madura Utils

[8] Madura Objects

[9] Madura Vaadin Support

[10] Madura Rules

[11] Madura Bundles

[12] Madura Workflow

[13] Madura Workflow UI

[14] Apache Licence 2.0

[15] Spring Framework

https://code.google.com/p/weblogic-jndi-startup/
http://projects.spring.io/spring-security/
http://www.atomikos.com/
http://tomcat.apache.org/
http://www.h2database.com
https://vaadin.com/home
https://github.com/RogerParkinson/MaduraUtils
https://github.com/RogerParkinson/MaduraObjects
https://github.com/RogerParkinson/MaduraVaadinSupport
https://github.com/RogerParkinson/MaduraRules
https://github.com/RogerParkinson/MaduraBundles
https://github.com/RogerParkinson/madura-workflows
https://github.com/RogerParkinson/madura-workflows/tree/master/madura-workflow-ui
http://www.apache.org/licenses/LICENSE-2.0
http://www.springsource.org/

©2015 Prometheus Consulting
User Guide madura-workflow-ui-1.0.1

- 7 -

3. What is this?

3.1. What do you mean: Workflow?

If you need an application that, say, just has a user fill in a form and save the results to a database
then you do not need workflow. However, if you need an application that has a user fill in one of
several forms, each of which has dynamic validation, then passes the result to another user who
operates it using another form (also with dynamic validation) and then perhaps send the result to an
external service that returns information that is then integrated into the result, and all this might take
several days or weeks to complete, then you probably do need workflow. If, in addition, there are
conditions and timeouts that route the results to a supervisor for review, and there are hundreds if
not thousands of these things going through the system at once then you almost certainly do need
workflow.

3.2. So what does this do?

This is a sample application showing what can be built onto Madura Workflow[12].

Madura Workflow is a workflow engine rather than an application, consequently it leaves a number
of implementation decisions open. Those decisions are addressed here. The sample application is
somewhere between a demo and production code. With a few tweaks it could be used in production
and part of this document explores those tweaks and further ways to extend the application.

Over and above the workflow engine this application provides the following:

• A full UI implemented in Vaadin which allows users to launch and manage process
instances.

• Security, based on Spring Security[2] which provides a login and associated permissions.
The permissions are used to restrict users' access to certain queues and process
instances.

• A way to deploy new process definitions on the fly using Madura Bundles[11]. The
bundles also contain all associated resources, such as forms, messages, object
definitions and custom code.

• A JPA database implementation, including a two phase commit transaction supporter
(Atomikos[3]). The configuration for this is worth reviewing.

• Integration with Madura Rules[10]. This means the objects defined in the process
definitions can have rules attached to them. The forms and other interactions with these
objects will automatically invoke the rules. This greatly simplifies the code that you would
otherwise have to write for the UI and message handling.

• Scheduling based on Spring's[15] task:scheduler namespace which by default uses
ScheduledThreadPoolExecutor.

• JMX integration which allows you to monitor some lower level facilities.

• Deployment in an application server, in this case Tomcat[4], but no Tomcat-specific
services are used so it ought to run on any JEE compliant server.

• A locking protocol which manages locks across the system.

Each of these is discussed in more detail below, as well as some ways to extend the application or
invoke Madura Workflow in other ways.

3.3. Running the application

The README.md file in [12] gives information about deploying this, including some minor but
necessary configuration.

You will need an application server. We tested this with Tomcat V7, but any application server you
are comfortable with should be just fine. It also runs on VMWare's cloud server, and probably most
others. Make sure you are running Java 7 or later.

When you start your application server the console log will show some warnings:

https://github.com/RogerParkinson/madura-workflows
http://projects.spring.io/spring-security/
https://github.com/RogerParkinson/MaduraBundles
http://www.atomikos.com/
https://github.com/RogerParkinson/MaduraRules
http://www.springsource.org/
http://tomcat.apache.org/
https://github.com/RogerParkinson/madura-workflows

©2015 Prometheus Consulting
User Guide madura-workflow-ui-1.0.1

- 8 -

WARN c.a.i.c.UserTransactionServiceImp - Slf4jLogger.java:12 No
 properties path set - looking for transactions.properties in classpath...
WARN c.a.i.c.UserTransactionServiceImp - Slf4jLogger.java:12 Using init
 file: /home/roger/madura4/.metadata/.plugins/org.eclipse.wst.server.core/
tmp0/wtpwebapps/MaduraWorkflowUI/WEB-INF/classes/transactions.properties
WARN c.a.jdbc.AbstractDataSourceBean - Slf4jLogger.java:12
 AtomikosDataSoureBean 'pu__workflow': poolSize equals default - this may
 cause performance problems!
WARN org.hibernate.ejb.Ejb3Configuration - Ejb3Configuration.java:1132
 HHH000144: hibernate.connection.autocommit = false breaks the EJB3
 specification
WARN c.a.jdbc.AbstractDataSourceBean - Slf4jLogger.java:12
 AtomikosDataSoureBean 'Workflow1-0.0.2': poolSize equals default - this
 may cause performance problems!
WARN org.hibernate.ejb.Ejb3Configuration - Ejb3Configuration.java:1132
 HHH000144: hibernate.connection.autocommit = false breaks the EJB3
 specification
INFO n.c.s.m.bundle.BundleManagerImpl - BundleManagerImpl.java:224 Added
 bundle: workflow1-0.0.2

These are all normal and do not cause problems, though the poolsize should be reviewed before
going into production.

Browse to http://localhost:8080/madura-workflow-ui/ (your server name and port may
vary if you are not running a default configured Tomcat on your local machine). You should see a
login page.

Figure (1) Login

The username/password is admin/admin.

©2015 Prometheus Consulting
User Guide madura-workflow-ui-1.0.1

- 9 -

Figure (2) Home-1

This is the home screen, the one every user reaches just after login. It is mostly taken up by the
Processes table which shows all the processes this user is allowed to see. Since we logged in as
admin (who has ADMIN permission) we can see (but not necessarily edit) everything, and there is a
process instance in the table with the status DONE, which means it ran to completion. Ordinary users
only see process instances they are able to do something with so they do not see DONE processes.
When you run your copy for the first time you will not see the DONE process.

The next step is to launch a new process instance. Click on File->Launch and you will see the
Launch Wizard.

Figure (3) LaunchWizard

The Launch Wizard shows a list of all the process definitions in the system that this user is allowed
to launch. Because this user has ADMIN permission that means all of them. Other users might see a
shorter list or none at all. In fact this is not the full list of process definitions anyway. There might be
multiple versions of each of these processes and only the latest versions are presented because we
cannot launch old versions. Also some process definitions are not directly launchable, they can only
be launched by another process so they are not included either.

Just clicking on one of the process definitions will show its launch form. Click on the first one, the
Demo process.

Before going any further we should look at what this process does.

process: Order "Demo" "This is the demo process" launchForm=LaunchDemo
 queue="Q1"{
 try {

©2015 Prometheus Consulting
User Guide madura-workflow-ui-1.0.1

- 10 -

 message=orderMessageSender;
 }
 catch (abort) {
 compute=temperatureCompute;
 }
 form=DisplayFahrenheit queue="Q1";
}

This is a trivial example of a process. It starts with a launch form which we will see next. Once
underway it tries to send a message to an external web service. The web service converts Fahrenheit
to Celsuis, total overkill for this kind of software, but it does give us an understandable sequence to
work through. If the web service fails the compute task is performed and this just runs some Java
code to convert the temperature.

Finally the process shows a form that displays the converted temperature.

The two forms could be custom written in Java using Vaadin, but this takes the lazy approach and
just generates the Vaadin form from the underlying object. The underlying object is, of course, a
Madura Object and includes rich metadata, so this is more functional that you might suppose.

<bean id="VaadinLaunchDemo"
 class="nz.co.senanque.workflow.VaadinLaunchForm" scope="prototype">
 <property name="referenceName" value="orderName"/>
 <property name="fieldList">
 <list>
 <value>orderName</value>
 <value>fahrenheit</value>
 </list>
 </property>
</bean>
<bean id="VaadinDisplayFahrenheit"
 class="nz.co.senanque.workflow.VaadinLaunchForm" scope="prototype">
 <property name="fieldList">
 <list>
 <value>celsius</value>
 </list>
 </property>
</bean>

Using the fieldList property we show only the fields we are interested in.

The message definition looks like this:

<bean id="orderMessageSender"
 class="nz.co.senanque.messaging.MessageSenderImpl">
 <property name="channel" ref="orderChannel" />
 <property name="replyChannel" ref="orderReplyChannel" />
</bean>

...which looks too simple to be true, but it refers to channels in the Spring Integration configuration
which is out of scope for this document. However it is worth noting that the workflow process
definition is only loosely coupled to SI. The workflow definition is only vaguely aware of how the
messages are handled, it just knows they get sent somehow and a response of some kind comes
back, and then it can go on.

©2015 Prometheus Consulting
User Guide madura-workflow-ui-1.0.1

- 11 -

Figure (4) LaunchForm

By the time you see this form the process instance has not yet been launched. If you hit the Cancel
button it never will be and there is nothing to clean up. Enter 'Order#1' into the Order Name field,
accept the default value for Fahrenheit, and click Okay.

The process instance is launched and its id is displayed, you also have an opportunity to attach
documents to the process instance at this point.

Figure (5) LaunchWizard2

And the Okay button will return you to the home page.

Figure (6) Home-2

The home page has an entry, which is the process instance you just launched. Yours might not have
a queue name yet, so give it a few seconds and click refresh until it does. Notice that the Reference
column contains 'Order#1' which is what you typed on the launch form. You can also see that it
is in queue Q1 (when it appears) and that it is running process definition Demo, the definition you
launched.

©2015 Prometheus Consulting
User Guide madura-workflow-ui-1.0.1

- 12 -

The process instance we launched has a queue name and that means it is waiting for a human to do
something. Click on that process instance.

Figure (7) Process1-Form

This is the form associated with this stage of the process. It is displaying information about the object
associated with this process instance, in this case an Order object. It is showing the converted
temperature in Celsius. You can click Okay for it to go on to the next step, but before you do click on
the Process tab.

Figure (8) Process1-Process

The Process tab shows the internal details of the process instance. You can see what bundle this
process was loaded from, its current status (Busy because you have got it locked) what queue it is in
and so on. You can view these details but unless you have TECHSUPPORT permission you cannot
change them. TECHSUPPORT can change anything you see here. There is also an opportunity to
view the attachments. Now press the Audit tab.

©2015 Prometheus Consulting
User Guide madura-workflow-ui-1.0.1

- 13 -

Figure (9) Process1-Audits

The Audit tab shows all the audit records generated for this process instance. You can see what
tasks were run and when, and you can see who locked the process instance as well. Notice that
entries 3 and 4 refer to a process instance of Demo_1 rather than Demo. This is indicates there was
an inner process generated from the main process' try/catch block. You can click on these entries for
more detail.

Figure (10) Process1-Audits Detail

Unlike the process instance details no one can edit an audit record, not even someone with
TECHSUPPORT permission, although anyone with enough access to the database could modify this
information, of course.

Now go back to the Form tab and press Okay. You might need to wait a few seconds and then press
refresh to see the process instance finished.

©2015 Prometheus Consulting
User Guide madura-workflow-ui-1.0.1

- 14 -

Figure (11) Home-3

As a demo this perhaps looks a little trivial. But note what happened carefully. A process instance
was launched with a launch form which accepted some initial data. That process was then managed
through multiple stages, including sending a message, operating a form, and running a custom
compute bean.

What we did not see yet is handling of errors. Let's go around again, but this time turn off your
internet connection.

Figure (12) Home-4

The new process is id 3 and, if you give it time to try the message and then refresh you will see this.
Notice the error message, that is because it could not get to the web service. So what happened
then? Well, take a look at the process definition again:

process: Order "Demo" "This is the demo process" launchForm=LaunchDemo
 queue="Q1"{
 try {
 message=orderMessageSender;
 }
 catch (abort) {
 compute=temperatureCompute;
 }
 form=DisplayFahrenheit queue="Q1";
}

If there is an error in the message the catch block will be executed and the compute task will figure
out the temperature. It will still land on the form, and that is where it is now. If you click on the entry
you will see the form.

©2015 Prometheus Consulting
User Guide madura-workflow-ui-1.0.1

- 15 -

Figure (13) Process2-Form

Click on the process tab.

Figure (14) Process2-Process

Now you can see the details of the process, including the error. On the Audit tab you can see the
trace of how the error was handled.

Figure (15) Process2-Audit

This shows the error from the message and the fact that the compute task was executed. Naturally
the form on the first tab looks much the same with a computed value for the temperature.

©2015 Prometheus Consulting
User Guide madura-workflow-ui-1.0.1

- 16 -

The subject of attachments came up twice in that demo, once when the process was launched and
once again when operating a form. Attachments are documents of any kind attached to the process
instance. There are limitations on the size of the document you can attach which vary depending on
the database product chosen. But any type of file can be attached. Also, attachments are used only
for user reference. They do not directly influence the state of the process, though a user might make
a decision based in information obtained by reading an attachment.

When the attachment button is pressed you see a window like this:

Figure (16) Attachments-1

This is the initial view of the attachments on a process instance, before any have been added. Now
press the New button.

Figure (17) Attachments-2

It wants a new attachment now. There is space for a comment, a protected flag and the usual buttons
to select and upload the file. The protected flag means only ADMIN and TECHSUPPORT users can
see this attachment. Once an attachment is uploaded it goes back to the list of attachments.

Figure (18) Attachments-3

Now the attachment just added is visible in the table. To examine it you just click on it and the
browser will attempt to download it or open it, depending on your browser setting. There is no way to
remove or modify attachments, that allows them to be used as a kind of audit trail.

©2015 Prometheus Consulting
User Guide madura-workflow-ui-1.0.1

- 17 -

4. The UI

4.1. Vaadin and Madura Vaadin Support

There seem to be endless ways of implementing a UI in Java so eventually you just have to pick one
you like. In this application the choice is Vaadin[6] mostly because of its Swing-like API and the fact
that as far as the programmer is concerned it is Java all the way down, you don't have to cope with
Javascript or JSP etc. It also has a rich set of controls and all the styling is controlled by CSS. The
CSS control and the 'Java all the way down' are not contradictory. Programmers should not need to
worry very much about styling, that can be turned over to a designer and they often know CSS better
than a Java programmer. Typically programmers can do a rough cut of the application styling and get
the functionality in place, then get the designer to got to work on the CSS.

It is no coincidence that Madura Vaadin Support[9] handles the integration between Vaadin and
Madura Objects[8]. That provides dynamic validation on the forms, I18n, and a good way to use
Vaadin with Spring, including Spring Security.

So the choice here is Vaadin with a little help from Madura Vaadin Support.

4.2. Security

The security implemented in the application uses Spring Security and the configuration for that is
defined in the file security-context.xml.

It is kept simple here: the users, passwords and permissions are hard coded in the xml file. In
production you would use more elaborate Spring Security options such as fetching user profiles
from a database etc. But this is sufficient to implement the login and permissions the application
actually needs to run. There is further integration in Madura Vaadin Support because this provides
the login form which then verifies the user against Spring Security and fetches the permissions. The
permissions for the current user are then held in the PermissionManager, another class supplied by
Madura Vaadin Support.

Madura Objects provides a way to attach permissions to object properties and Madura Vaadin
Support honours those when the forms are displayed. That means you can say the XYZ permission
only has read-only access to this property, and when it is displayed on a form it will be read-only etc.
Since all forms in the application use Madura Objects in this way then any/every property may have a
permission attached.

Queues also have permissions attached to them. That means that user have limited access to view
or operate that queue, depending on their permission. If the current user has only read access to the
queue then items in the queue cannot be opened. If they have no read access to the queue then no
items from that queue will be displayed.

In an enterprise environment, and typically workflow would run in an enterprise environment, there
is often an external login procedure which adds a security token to the request. Madura Vaadin
Support's login form supports this, allowing a pre-logged-in user to bypass the login form.

There is also one 'super permission' called TECHSUPPORT. Users with this permission can always
modify any process instance in any queue, including ones that are being worked on by another user.
Naturally that capability ought to be used sparingly. The ADMIN permission allows users to view, but
not necessarily change, anything. The specific names associated with these permissions are defined
in the file FixedPermissions.java.

4.3. Spring Framework

When using Spring with Vaadin it is not normally possible to use XML to wire the display components
because Spring makes most sense when wired beans are singletons and Vaadin's display objects
need to be session objects. Madura Vaadin Support simplifies this by using two basic xml files, in
this case applicationcontext.xml and WorkflowUI.xml. The first of these is just a normal
Spring context file and most of the beans defined there are singletons as you expect with Spring. The
second looks like a lot of singelton beans but they are, in fact, all session beans. This entire context
is created when a new session starts and remains associated with the session until it ends. This

https://vaadin.com/home
https://github.com/RogerParkinson/MaduraVaadinSupport
https://github.com/RogerParkinson/MaduraObjects

©2015 Prometheus Consulting
User Guide madura-workflow-ui-1.0.1

- 18 -

makes it easy to define Vaadin display objects as beans and it nicely separates the singletons from
the session beans.

4.4. Scheduler

The scheduler is configured using Spring in applicationContext.xml like this:

<!-- The executor is responsible for scanning for active processes etc -->
<bean id="executor" class="nz.co.senanque.workflow.ExecutorImpl" />

<task:scheduler id="myScheduler" pool-size="10" />
<task:scheduled-tasks scheduler="myScheduler">
 <task:scheduled ref="bundleManager" method="scan"
 fixed-delay="10000" />
</task:scheduled-tasks>
<task:scheduled-tasks scheduler="myScheduler">
 <task:scheduled ref="executor" method="activeProcesses"
 fixed-delay="10000" />
</task:scheduled-tasks>
<task:scheduled-tasks scheduler="myScheduler">
 <task:scheduled ref="executor" method="deferredEvents"
 fixed-delay="10000" />
</task:scheduled-tasks>
<task:scheduled-tasks scheduler="myScheduler">
 <task:scheduled ref="executor" method="clearDeferredEvents"
 fixed-delay="60000" />
</task:scheduled-tasks>

The key to this is the myScheduler to which are added several tasks. The first is the task that
invoked the bundle manager to scan the bundles directory for new bundles. The other three are
workflow tasks and they invoke different methods on the executor bean.

The first of these scans for active processes, ie processes in tasks that can be executed off line.
Such tasks include compute tasks and message tasks, but they do not include form tasks which need
user input.

The other two tasks are for handling deferred events, which mostly means timeouts. When a deferred
even comes due the relevant process instance has its status updated and then left for the active
process handler to progress it. The clearDeferredEvents method is minor housekeeping which
organises removing old deferred events. It does not need to run as often as the others.

If you need to deploy multiple copies of the application all using the same databases then depending
on your workload profile you could consider having the workflow scheduled tasks run in only one of
those copies because doing all the off-line processing from one dedicated machine is often a good
idea. But multiple copies will run happily enough together.

But all copies of the application must scan the bundles directory because they must all be aware of
the same bundles.

©2015 Prometheus Consulting
User Guide madura-workflow-ui-1.0.1

- 19 -

5. Workflow Bundles
By making use of Madura Bundles[11] the application supports deploying of new workflow definitions
and their associated resources on the fly. A bundle is a specially packaged jar file and by copying
a new jar file into the monitored directory a new bundle can be deployed or an existing bundle can

be upgraded(1). In the case of new bundles the workflow definitions contained in the bundle will
become visible on the list of launchable processes in the UI. For upgraded bundles the situation
is more complex because there may be active process instances using the previous version (say,
version 0.0.1) and now we have 0.0.2. Those active process instances will actually continue to use
the workflow definition they started with, and only new launches will use the 0.0.2 version.

Bundles, as already noted, are just specially packaged jar files, which means they have some extra
entries in the MANIFEST.MF file, including a reference to a Spring context file. So they are just
ordinary Madura Bundles, and we will work through their configuration in detail below. First we need
to look at the bundle configuration in the main application.

5.1. Bundle Configuration

<!-- <jee:jndi-lookup id="bundlesDir" jndi-name="java:/comp/env/
WorkflowUIBundlesDir" expected-type="java.lang.String" /> -->
<bean id="bundleManager"
 class="nz.co.senanque.madura.bundle.BundleManagerImpl">
<!-- <property name="directory" ref="bundlesDir"/> -->
 <property name="inheritableBeans">
 <map>
 <entry key="jpaVendorAdapter" value-ref="jpaVendorAdapter"/>
 <entry key="transactionManager" value-ref="transactionManager"/>
 <entry key="lockFactory" value-ref="lockFactory"/>
 <entry key="em-workflow" value-ref="em-workflow"/>
 <entry key="atomikosTransactionManager" value-
ref="atomikosTransactionManager"/>
 <entry key="atomikosUserTransaction" value-
ref="atomikosUserTransaction"/>
 <entry key="errorEndpoint" value-ref="errorEndpoint"/>
 <entry key="genericEndpoint" value-ref="genericEndpoint"/>
 <entry key="environment" value-ref="environment"/>
 <entry key="workflowDAO" value-ref="workflowDAO"/>
 <entry key="bundleManager" value-ref="bundleManager"/>
 <entry key="hints" value-ref="hints"/>
 </map>
 </property>
</bean>

<bean id="bundleListener"
 class="nz.co.senanque.workflowui.bundles.BundleListenerImpl">
 <property name="messageSource" ref="messageSource"/>
</bean>

This is from the applicationcontext.xml file. It defines a JNDI variable which holds the location
of the directory the bundles are held in. This directory will be scanned every few (configurable)
seconds for new files, and the inheritable beans map contains beans that are defined in this file that
must be visible from the bundles. The bundles actually see all these beans as if they defined them
themselves.

Finally the bundleListener bean is called by the bundle manager whenever a new bundle is
added. The listener peers inside the new bundle for new process definitions and new queues and it
places these into an internal map so that when the user opens the list of available processes they are

1) Since Madura Bundle 4.0.0 bundles may be deployed to a maven repository and, instead of copying the jar file to the
monitored directory you copy a small text file describing the bundle instead.

https://github.com/RogerParkinson/MaduraBundles

©2015 Prometheus Consulting
User Guide madura-workflow-ui-1.0.1

- 20 -

already there for display. The alternative would be to scan all the bundles for this information every
time it is asked for which would be inefficient.

Inside a bundle we always have a Spring context file and a bean defining the workflow manager like
this:

<bean id="workflowManager"
 class="nz.co.senanque.workflow.WorkflowManagerImpl">
 <property name="schema" value="classpath:/OrderInstances.xsd" />
 <property name="processes" value="classpath:/OrderWorkflow.wrk" />
</bean>

This refers to the xsd file that defines the objects used by the workflow, and the wrk file that contains
the workflow process definitions.

As well as this the bundle needs a JPA database, yes another one, see 4 for details as to why.

All the beans defined in the bundle context file are singletons unless scoped otherwise, and one or
two are. Here are the rest of the essential beans:

<import resource="classpath:/database-nmcinstances-context.xml"/>

<context:annotation-config />
<context:component-scan base-package="nz.co.senanque.workflow.nmcrules" />
<bean id="propertyConfigurer"
 class="org.springframework.beans.factory.config.PropertyPlaceholderConfigurer" /
>

<bean id="bundleName"
 class="nz.co.senanque.madura.bundle.StringWrapperImpl">
 <constructor-arg value="${bundle.name}"/>
</bean>
<bean id="permissionManager"
 class="nz.co.senanque.vaadinsupport.permissionmanager.PermissionManagerImpl"
 scope="session"/>
<bean id="maduraSessionManager"
 class="nz.co.senanque.vaadinsupport.application.MaduraSessionManager"
 scope="bundle">
 <property name="formFieldFactory" ref="fieldFactory"/>
</bean>

<bean id="fieldFactory" class="nz.co.senanque.vaadinsupport.FieldFactory"
 scope="bundle"/>

<bean id="workflowManager"
 class="nz.co.senanque.workflow.WorkflowManagerImpl">
 <property name="schema" value="classpath:/NMCInstances.xsd" />
 <property name="processes" value="classpath:/NMCWorkflow.wrk" />
 <property name="validationEngine" ref="validationEngine" />
</bean>

<bean id="contextDAO" class="nz.co.senanque.workflow.nmc.ContextJPA"/>

This file imports a database configuration which will be discussed in detail in 4. There is some
necessary housekeeping beans and then three session scoped beans: maduraSessionManager,
fieldFactory and hints. These are all used by Madura Vaadin Support. The two DAO beans are
used to access the two different databases, then there are two forms both with prototype scope.

©2015 Prometheus Consulting
User Guide madura-workflow-ui-1.0.1

- 21 -

5.2. Bundled Forms

If the workflow definition includes form tasks or launch forms then those forms must be in the
bundle, they cannot be delivered by the main application because it does not know anything about
the data in the workflow definition. That means the forms are configured in the bundle like this:

<bean id="VaadinLaunchForm"
 class="nz.co.senanque.workflow.VaadinLaunchForm" scope="prototype">
 <property name="referenceName" value="orderName"/>
</bean>
<bean id="VaadinFirstForm" class="nz.co.senanque.workflow.VaadinFirstForm"
 scope="prototype">
 <property name="fieldList">
 <list>
 <value>orderName</value>
 <value>celsius</value>
 </list>
 </property>
</bean>

The two forms are referred to by the workflow definition. It has an entry like this:

...
process: Order "Process2" "This is the second process"
 launchForm=LaunchForm {
 try {
 message=orderMessageSender;
 form=FirstForm queue="Q1";
...

There they are! LaunchForm and FirstForm. The name of the form in the definition is just the name
of the bean in the bundle... except the beans have 'Vaadin' on the front of it so them is a little more
complicated. The forms are actually delivered using the formFactory bean and that is auto-injected
with the environment bean which contains the string 'Vaadin'. If it is injected with an environment
formFactory prepends the string to the bean name. If there is no environment then it prepends
nothing.

The form beans need to be scoped as prototype so that whenever they are requested by the
formFactory a new copy is created.

Why would you ever need that extra complication? Well sometimes you might have multiple UI
technologies going on at once. Some users, perhaps, are using Vaadin and others for whatever
reason are using Swing and others are using Camel. Assuming you know which user is using which
technology you can change the hard coded 'Vaadin' there for something like ${myenvironment}
and arrange for the correct value for that symbol to be defined for each user. Then you would define
six beans to cover all the cases like this:

...
<bean id="VaadinLaunchForm"
 class="nz.co.senanque.workflow.VaadinLaunchForm" scope="prototype">
 <property name="referenceName" value="orderName"/>
</bean>
<bean id="VaadinFirstForm" class="nz.co.senanque.workflow.VaadinFirstForm"
 scope="prototype">
 <property name="fieldList">
 <list>
 <value>orderName</value>
 <value>celsius</value>

©2015 Prometheus Consulting
User Guide madura-workflow-ui-1.0.1

- 22 -

 </list>
 </property>
</bean>
<bean id="SwingLaunchForm" class="nz.co.senanque.workflow.SwingLaunchForm"
 scope="prototype">
 <property name="referenceName" value="orderName"/>
</bean>
<bean id="SwingFirstForm" class="nz.co.senanque.workflow.SwingFirstForm"
 scope="prototype">
 <property name="fieldList">
 <list>
 <value>orderName</value>
 <value>celsius</value>
 </list>
 </property>
</bean>
<bean id="CamelLaunchForm" class="nz.co.senanque.workflow.CamelLaunchForm"
 scope="prototype">
 <property name="referenceName" value="orderName"/>
</bean>
<bean id="CamelFirstForm" class="nz.co.senanque.workflow.CamelFirstForm"
 scope="prototype">
 <property name="fieldList">
 <list>
 <value>orderName</value>
 <value>celsius</value>
 </list>
 </property>
</bean>
<bean id="formFactory" class="nz.co.senanque.forms.FormFactoryImpl"/>
<bean name="environment" class="nz.co.senanque.forms.FormEnvironment">
 <property name="name" value="${myenvironment}"/>
</bean>

With that in place the right form will be delivered to the right user. However, so far only Vaadin forms
have been fully implemented so if you do want Swing or Camel you will have more work to do than
for Vaadin. It is probably fairly easy to build a simple form in another technology (depending on the
technology, of course), more complex is integrating that form with Madura Objects. Without Madura
Objects the forms would need to be more complicated and harder to maintain.

In practice the two Vaadin forms in the sample are very simple extensions of a base class
GenericVaadinForm that is packaged in the main application. The base class is generic enough
to simply generate a form based on the object it is bound to using all the properties it finds in it,
unless a field list is supplied (as it is with the FirstForm) in which case just those fields are displayed.
It also presents three buttons: OK, Cancel and Park. The first two are obvious enough but the last
allows a user to save the current process instance without actually releasing it, useful if they have not
completed it but want to go home for the night etc.

The generic form also has a referenceName property. When the form is saved the property named
for this (orderName) in this case, is copied to the process instance reference, which means it is
visible in the table of process instances.
GenericVaadinForm is smart enough to generate date fields from date properties, checkboxes
from booleans, drop downs from enums etc and because they are backed by Madura Objects you
get automatic validation of the fields. For example numeric fields will insist the user enters a number.
Labels are automatically generated and they are all supported by I18n. Even better you can use
Madura Rules to add rules for cross field validation and to make the forms dynamic. For example you
can specify rules that will limit the drop down lists on one field depending on values entered into other
fields, you can also add rules that switch fields from enabled to disabled, visible and invisible etc.

While you can use rules to control if fields are readOnly or not, you sometimes want to make a whole
form readOnly. You can do that with the readOnlyForm property like this:

©2015 Prometheus Consulting
User Guide madura-workflow-ui-1.0.1

- 23 -

<bean id="VaadinFirstForm" class="nz.co.senanque.workflow.VaadinFirstForm"
 scope="prototype">
 <property name="readOnlyForm" value="true"/>
 <property name="fieldList">
 <list>
 <value>orderName</value>
 <value>celsius</value>
 </list>
 </property>
</bean>

So you can get quite a long way with just using GenericVaadinForm. But in a production
application you would eventually need to add something else. For example if you have an Order
which needs OrderItems added you would probably extend GenericVaadinForm but you would
add more code to it to create OrderItems, attach them to the Order and so on. There would likely be
more buttons involved and at least one popup window. But do remember than the OrderItems can be
monitored by rules as well. So, for example, to get the order total you would write a rule and the total
would be updated as OrderItems are added, deleted or their details changed.

5.3. Bundle contents

There are two working bundles supplied with the application: Workflow1 and tbundle, the most
interesting one is Workflow1. They are both maven projects under the bundles directory. The
resulting jar files are copied to that directory as well so this is where bundlesDir ought to point to.

The Workflow1 bundle looks like this:

Figure (19) Workflow1 Bundle

There are two subdirectories at the top, the nz is the beginning of the nz.co.senanque.workflow
structure which is detailed later. META-INF, as usual, contains the MANIFEST.MF file which in this
case looks like this:

Manifest-Version: 1.0
Archiver-Version: Plexus Archiver
Created-By: Apache Maven
Build-Jdk: 1.7.0_21
Built-By: Roger Parkinson
Bundle-Activator: nz.co.senanque.madura.bundle.BundleRootImpl
Bundle-Context: workflow-context.xml

©2015 Prometheus Consulting
User Guide madura-workflow-ui-1.0.1

- 24 -

Bundle-Description: A sample bundle containing a workflow.
Bundle-Name: Workflow1
Bundle-Version: 0.0.2

This is normal for a Madura Bundle and the main thing to note is that the Bundle-Context
specifies the workflow-context.xml, which is the Spring context that is to be loaded for this
bundle.

After the subdirectories there are a number of files in the top directory of the jar file.
workflow-context.xml ,SI-context.xml and database-orderinstances-context.xml
are all Spring context files. workflow-context.xml is the main one that imports the other
two. database-orderinstances-context.xml contains the database definitions and SI-
context.xml contains Spring Integration configuration, which means this bundle uses SI to send
messages to external services, typically web services.
OrderWorkflow.wrk and OrderInstances.xsd are the process definitions and the definitions of
the objects they refer to. The xsd file has already been used to generate the annotated POJOs but it
has a runtime function as well.

There are two xsl files which are used to generate and unpack web services messages. These
are referred to by SI-context.xml, and there are several properties files used to provide I18n
translation.

Finally the OrderRules.txt file contains the Madura Rules that monitor the objects defined in
the xsd file. This file actually has no runtime function because the rules have been generated into
Java classes and placed in nz.co.senanque.workflow.orderinstances. choices.xml and
Messages.xml are also used by Madura Rules.

Which brings us to the contents of the nz.co.senanque.workflow structure.
nz.co.senanque.workflow.orderinstances contains the POJOs generated from the xsd
file and nz.co.senanque.workflow.orderrules contains the generated rules. At the top of
the structure, ie in nz.co.senanque.workflow are classes for the two Vaadin forms and the two
custom compute classes referred to by the workflow definition.

©2015 Prometheus Consulting
User Guide madura-workflow-ui-1.0.1

- 25 -

6. Database
Madura Workflow requires a JPA database and a transaction handler that supports two phase
commit. For this application the choice is an H2[5] memory resident database and the Atomikos[3]
transaction handler. Memory resident databases are, of course, not a good choice for production but
very good for a demo. The H2 database, while not normally a choice for enterprise databases, has
the advantage that it requires no installation, which means it is that much less setup to do to run this
application out of the box. The database configuration is defined in database-context.xml as
well as a separate configuration for each workflow bundle.

It is important to note that there are two databases or, at least, two database connections. They are
both JPA and they are normally, though not necessarily the same database product. But why exactly
are there two databases?

There is one for the basic workflow, that holds the process instances and so on, but nothing about
the data that is being manipulated by the workflow. For example a process definition might refer to
an Order object and this has to be serialized to a database between workflow tasks. But the Order
is part of the process definition, not the core workflow. Process definitions are free to operate on any
objects they want to so those objects cannot be dictated by the core workflow. That means that the
bundle containing the process definition must contain the object definitions as well, so there are Java
POJOs annotated with JPA included in the bundle, effectively defining the database tables needed
for the bundle.

6.1. Workflow Database

Now it is time to look at the workflow database configuration (as opposed to the one in the bundle).
This is the database-context.xml file:

...
<bean id="JDBCPool"
 class="com.vaadin.data.util.sqlcontainer.connection.SimpleJDBCConnectionPool">
 <constructor-arg index="0" value="org.h2.jdbcx.JdbcDataSource"/>
 <constructor-arg index="1"
 value="jdbc:h2:mem:workflow;DB_CLOSE_ON_EXIT=FALSE;MVCC=true"/>
 <constructor-arg index="2" value=""/>
 <constructor-arg index="3" value=""/>
</bean>

<bean id="em-workflow"
 class="org.springframework.orm.jpa.LocalContainerEntityManagerFactoryBean"
 depends-on="springJtaPlatformAdapter">
 <property name="persistenceXmlLocation" value="classpath:META-INF/
persistence-workflow.xml" />
 <property name="persistenceUnitName" value="pu-workflow" />
 <property name="dataSource" ref="dataSourceWorkflow" />
 <property name="jpaVendorAdapter" ref="jpaVendorAdapter" />
 <property name="jpaDialect">
 <bean class="org.springframework.orm.jpa.vendor.HibernateJpaDialect" />
 </property>
 <property name="jpaProperties">
 <map>
 <entry key="hibernate.transaction.jta.platform"
 value="nz.co.senanque.hibernate.SpringJtaPlatformAdapter" />
 <entry key="hibernate.dialect"
 value="org.hibernate.dialect.H2Dialect" />
 <entry key="hibernate.format_sql" value="true" />
 <entry key="hibernate.connection.autocommit" value="false" />
 </map>
 </property>
</bean>

http://www.h2database.com
http://www.atomikos.com/

©2015 Prometheus Consulting
User Guide madura-workflow-ui-1.0.1

- 26 -

<bean id="dataSourceWorkflow"
 class="com.atomikos.jdbc.AtomikosDataSourceBean" init-method="init"
 destroy-method="close">
 <property name="uniqueResourceName" value="pu__workflow" />
 <property name="xaDataSourceClassName"
 value="org.h2.jdbcx.JdbcDataSource" />
 <property name="xaProperties">
 <props>
 <prop
 key="url">jdbc:h2:mem:workflow;DB_CLOSE_ON_EXIT=FALSE;MVCC=true</prop>
 </props>
 </property>
 <property name="maxPoolSize" value="20"/>
</bean>

<bean id="jpaVendorAdapter"
 class="org.springframework.orm.jpa.vendor.HibernateJpaVendorAdapter">
 <property name="showSql" value="false" />
 <!-- ensures new db is auto created if needed -->
 <property name="generateDdl" value="true" />
 <property name="databasePlatform"
 value="org.hibernate.dialect.H2Dialect" />
</bean>

<bean id="springJtaPlatformAdapter"
 class="nz.co.senanque.hibernate.SpringJtaPlatformAdapter">
 <property name="jtaTransactionManager" ref="transactionManager" />
</bean>
<bean id="atomikosTransactionManager"
 class="com.atomikos.icatch.jta.UserTransactionManager"
 init-method="init" destroy-method="close">
 <property name="forceShutdown" value="false" />
</bean>
 <bean id="atomikosUserTransaction"
 class="com.atomikos.icatch.jta.UserTransactionImp">
 <property name="transactionTimeout" value="300" />
 </bean>
<bean id="transactionManager"
 class="org.springframework.transaction.jta.JtaTransactionManager">
 <property name="transactionManager" ref="atomikosTransactionManager" />
 <property name="userTransaction" ref="atomikosUserTransaction" />
 <property name="allowCustomIsolationLevels" value="true" />
</bean>

<bean id="persistenceAnnotation"
 class="org.springframework.orm.jpa.support.PersistenceAnnotationBeanPostProcessor" /
>

The JDBCPool bean is used to display the table of relevant process instances to a user. It uses
simple JDBC protocol rather than JPA because that is all the Vaadin table control needs.
em-workflow is the JPA entity manager for the workflow database. This specifes the persistence
xml file and a unit name. It also specifies that this entity manager uses Hibernate and the H2 dialect,
as well as a datasource called datasourceWorkflow.
datasourceWorkflow is the Atomikos wrapper for the H2 JDBC datasource and it specifies the url
for the database location. It also specifes a unique resource name which is used by the transaction
manager. In this case we just supply a constant but for the bundles this is more complex.
jpaVendorAdapter specifies some Hibernate switches.

©2015 Prometheus Consulting
User Guide madura-workflow-ui-1.0.1

- 27 -

The database configuration included assumes the databases will be created (in memory) when the
connection is requested. In production you would more likely have SQL scripts to do this and you
would run them beforehand.

The rest of the beans are all relating to transaction management. They ensure that the Atomikos
transaction manager is configured properly with Spring, including annotation driven transactions.

6.2. Bundled Databases

Meanwhile the bundles define their own database connections and it is vital that both databases
are kept in sync, which is why we need the 2 phase commit support that Atomikos provides.
Remember there might be multiple bundles, and each bundle might define a different database. The
configuration in the bundle should look like this:

...
<bean id="em-local"
 class="org.springframework.orm.jpa.LocalContainerEntityManagerFactoryBean">
 <property name="persistenceXmlLocation" value="classpath:persistence-
orderinstances.xml" />
 <property name="persistenceUnitName" value="pu-local" />
 <property name="dataSource" ref="dataSourceLocal" />
 <property name="jpaVendorAdapter" ref="jpaVendorAdapter" />
 <property name="jpaDialect">
 <bean class="org.springframework.orm.jpa.vendor.HibernateJpaDialect" />
 </property>
 <property name="jpaProperties">
 <map>
 <entry key="hibernate.transaction.jta.platform"
 value="nz.co.senanque.hibernate.SpringJtaPlatformAdapter" />
 <entry key="hibernate.dialect"
 value="org.hibernate.dialect.H2Dialect" />
 <entry key="hibernate.format_sql" value="true" />
 <entry key="hibernate.connection.autocommit" value="false" />
 </map>
 </property>
</bean>

<bean id="dataSourceLocal"
 class="com.atomikos.jdbc.AtomikosDataSourceBean" init-method="init"
 destroy-method="close">
 <property name="uniqueResourceName" value="${bundle.name}" />
 <property name="xaDataSourceClassName"
 value="org.h2.jdbcx.JdbcDataSource" />
 <property name="xaProperties">
 <props>
 <prop key="url">jdbc:h2:mem:local;DB_CLOSE_DELAY=-1;MVCC=true</
prop>
 </props>
 </property>
 <property name="maxPoolSize" value="20"/>
</bean>

<bean id="persistenceAnnotation"
 class="org.springframework.orm.jpa.support.PersistenceAnnotationBeanPostProcessor" /
>

This is simpler than the earlier configuration because the transaction beans are already defined there
and shared with this configuration. So all we need here is an entity manager and a data source, and
they look much like the ones we already saw.

©2015 Prometheus Consulting
User Guide madura-workflow-ui-1.0.1

- 28 -

The one key difference is the unique resource name, which is here set to ${bundle.name}. This
is the name of the bundle plus its version, so if you upgrade a bundle this unique name will still be
unique, and it needs to be. The ${bundle.name} is always set by the bundle manager so you don't
have to do anything to set it.

It is worth noting that the persistenceXmlLocation refers to a file contained in the bundle and
that, in turn, refers to annotated POJOS also contained in the bundle. Also that the reference to the
jpaVendorAdapter bean is actually a reference to a bean in the main application that is passed to
the bundle

©2015 Prometheus Consulting
User Guide madura-workflow-ui-1.0.1

- 29 -

7. Locking
While it is common to rely on database for locking the workflow often needs to lock things across
transactions so it uses the locking facility from Madura Utils[7]. This has two variants, and it is easy to
add more.

For this application the choice is SimpleLocking which relies on memory-based flags and only
works if there is only one instance of the application running, albeit supporting multiple users. A more
likely choice for production is SQLLocking which uses its own database connection to store the flags
on a database table.

https://github.com/RogerParkinson/MaduraUtils

©2015 Prometheus Consulting
User Guide madura-workflow-ui-1.0.1

- 30 -

8. JMX
The application supports JMX. Using JMX you can monitor the status of SimpleLocking and, if
necessary, kill rogue locks. You can also freeze and restart the executor mentioned in 4.4.

©2015 Prometheus Consulting
User Guide madura-workflow-ui-1.0.1

- 31 -

9. Configuring for Production
The process bundles are held in a sweep directory defined as follows:

<jee:jndi-lookup id="bundlesDir" jndi-name="java:/comp/env/
WorkflowUIBundlesDir" expected-type="java.lang.String" />
<bean id="bundleManager"
 class="nz.co.senanque.madura.bundle.BundleManagerImpl">
 <property name="directory" ref="bundlesDir"/>
 ...
</bean>

You will find the above configuration in applicationContext.xml.

The next step is to tell your application server what value to give that JNDI name. This depends on
your application server. For Tomcat you can just edit it into your context.xml file like this:

<Environment name="WorkflowUIBundlesDir" value="MY_DIRECTORY/bundles"
 type="java.lang.String" override="true"/>

Finally you want to actually add some bundles to that directory. There are two example bundle
projects you can use right away, these are projects inside the main project's bundles directory and
they are from child projects (simple-workflow and order-workflow). Use those as templates for your
own bundles.

You can use this application in production, with appropriate configuration changes, or you can
enhance it. Here is a summary of things to look at if you follow the former route.

• Database. Obviously you do not want an in-memory database for a production system.
You may want to review whether you want H2 or some other database product more
widely used in enterprise applications. Hibernate and Atomikos are also only options that
can be replaced by alternatives you may prefer.

• Tomcat. The application is not particularly dependent on Tomcat because it only uses
standard JEE facilities. The one area that might be a little tricky is if you want to use
WebLogic because it has no easy way of defining a JNDI name to point to a simple string.
That problem is solved by [1]. Your reconfigured application will likely make use of JNDI
data sources instead of the simpler ones configured here. There are also decisions to be
made around how many instances of the application, particularly how many copies of the
scheduler are running.

• Security. The hard coded users in the security configuration must be reworked to
use your enterprise security facilities. This usually just means adjusting the security
configuration file because Spring Security is very comprehensive.

• The scheduler options configured here are probably about right, but your workload might
mean they need to be tuned or tweaked, or you might just have different preferences in
your enterprise.

• Locking. You will almost certainly need to move from SimpleLock to SQLLock or perhaps
something else you prefer.

• The CSS definitions. You do not have to keep the defaults. You can change all the fonts,
colours and images and completely rebrand this application if you know enough about
CSS.

• Language translations. The application is, we believe, fully i18n compliant. You will
want to look at src/main/resources/messages.properties and produce a
translated version of that. There is already a French one there. You also need to check
localmessages.properties in the bundles.

• Writing your own workflow definitions, forms, objects and rules. The whole reason for
doing this is to get the workflow you really want, so this step is obvious. It is where,
hopefully, most of the work will go to get the application where you want it.

https://code.google.com/p/weblogic-jndi-startup/

©2015 Prometheus Consulting
User Guide madura-workflow-ui-1.0.1

- 32 -

10. Building Your Own
But there may be times when it is simpler to deploy a new application for your workflow. This might
be because you don't like Vaadin as a UI or perhaps you want to deploy smaller applications to
specific user groups, and perhaps you aren't even bothered about using bundles to hold the forms.
Maybe you want a very cut down app that someone can run on a tablet. In that case all you really
need is a way for them to scan the PROCESSINSTANCE table for records that are in WAIT state and
whose Queue Name is the one they are to access. Once they find one they should do the following:

• Lock the process instance using the chosen lock mechanism.

• Change the status to BUSY and write their user name into the LockedBy field.

• Save the record.

• Release the lock.

• Fetch the context information eg the Order or whatever object structure is associated with
this process definition.

• Present a form or some kind of input facility for the user to complete and have them
indicate when they are done.

• Lock the process instance (again) using the chosen lock mechanism.

• Save the updated context and update the PROCESSINSTANCE status to GO and clear
the lockedBy field. This should be a 2 phase commit.

• Release the lock.

That assumes you have the scheduler running in some other application, perhaps this one or a
modified version of it. The scheduler application will ensure the process instances move through the
process definition while keeping the above application as simple as possible.

©2015 Prometheus Consulting
User Guide madura-workflow-ui-1.0.1

- 33 -

A. License
The code specific to MaduraWorkflowUI is licensed under the Apache License 2.0 [14].

The dependent products have compatible licenses specified in their pom files. Madura Rules
(optional) has a dual license to cover projects that do not qualify for the Apache License.

http://www.apache.org/licenses/LICENSE-2.0

©2015 Prometheus Consulting
User Guide madura-workflow-ui-1.0.1

- 34 -

B. Release Notes
1.0.1

No actual changes, just a problem with tags.

1.0.0

Initial version.

	1. Change Log
	2. References
	3. What is this?
	3.1. What do you mean: Workflow?
	3.2. So what does this do?
	3.3. Running the application

	4. The UI
	4.1. Vaadin and Madura Vaadin Support
	4.2. Security
	4.3. Spring Framework
	4.4. Scheduler

	5. Workflow Bundles
	5.1. Bundle Configuration
	5.2. Bundled Forms
	5.3. Bundle contents

	6. Database
	6.1. Workflow Database
	6.2. Bundled Databases

	7. Locking
	8. JMX
	9. Configuring for Production
	10. Building Your Own
	A. License
	B. Release Notes

