
CRaSH
CRaSH cookbook

Julien Viet

eXo Platform
Copyright © 2011 eXo Platform SAS

Table of Contents

Preface

1. FAQ
1.1. General
1.2. Running CRaSH
1.3. Basic
1.4. Commons problems

2. Create your first command
2.1. Run CRaSH
2.2. Add new command
2.3. refresh console

3. How to print an array
3.1. Exemple
3.2. Table Elements
3.3. table
3.4. attributes
3.5. styles

4. Attaching to a running JVM
4.1. Expose several already running JVM via SSH using

Preface
Cookbook.

Page 4 of 12

1
FAQ

1.1. General

1.1.1. What is CRaSH ?

CRaSH is a shell that extends JVM. With CRaSH, you will connect with a shell directly on a JVM.
Moreover, you could add your command (Java/Groovy) and that's why CRaSH is really interesting.

1.1.2. What can I do with CRaSH ?

Monitoring JVM and make your own dashboard command.

Make command for your application (add data in a cache, add user, monitor jobs).

Make your JMX command.

1.1.3. What is the differences between CRaSH and JMX ?

JMX provides only bean and methods.That's all. CRaSH permit to access to JMX and to make
command with it. CRaSH also permit to make script with thread, jdbc, entity ...

1.2. Running CRaSH

1.2.1. How can I run CRaSH ?

See documentation : reference.html#running

1.2.2. How can I connect Crash to a JVM ?

See documentation Connection in Shell Usage chapter reference.html#connection

1.3. Basic

1.3.1. What is the best way to create a command ?

The best way to create a command is to use CRaSH utilities. See command as a class :
reference.html#command_as_class

Page 5 of 12

1.3.2. What is the best way to start with CRaSH ?

Launch CRaSH and play with commands

Create commands (script command and class command)

See cookbook and documentation.

1.4. Commons problems

1.4.1. "Command not found"

In most cases, when you created a command, it's a syntax error in a command. Check your import
and syntax with your ide.

1.4.2. Can't find crash.properties file

You have to launch CRaSH in standalone mode once. Then, it will appears in
$CRASH_HOME/conf/

1.4.3. "Remoting issue"

It could happen when you have an error in your command. For example :

% jdbc select se
Remoting issue

1.4.4. Where are base commands ?

They will be in directory. You have to launch CRaSH once in$CRASH_HOME/cmd/base

standalone mode.

1.4.5. I try to run CRaSH in Eclipse and it terminates immediately

CRaSH uses jline to handle keyboard input, and it's bypassing the Java API to read the key
events. Somewhere in the process there is a mismatch with the input handling in the Console view
of Eclipse, and CRaSH terminates without any reported error. You have to force jline to use a pure
Java handling of the keyboard events by adding the following JVM parameter in the Launch
Configuration:

-Djline.terminal=jline.UnsupportedTerminal

You will notice that the caret is not positioned correctly after submitting a command.

Page 6 of 12

2
Create your first command

In this cookbook, you will learn how to create a simple script command. You will see that you can
create it dynamically without restarting CRaSH.

A better solution to create a command is to use CRaSH class.It provides tools to simply
command creation.

2.1. Run CRaSH

cd $CRASH_HOME/bin
./crash.sh
Type help at prompt

You will see something like :

Page 7 of 12

 Try one of these commands with the -h or --help switch:

NAME DESCRIPTION
clock
dashboard
date show the current time
env display the term env
filter
hello
help provides basic help
java various java language commands
jdbc JDBC connection
jmx Java Management Extensions
jndi Java Naming and Directory Interface
jpa Java persistance API
jvm JVM informations
log logging commands
man format and display the on-line manual pages
shell shell related command
sleep sleep for some time
sort Sort a map
system vm system properties commands
thread JVM thread commands

2.2. Add new command
To add a command to CRaSH. You have to add a groovy file in the cmd directory :

cd $CRASH_HOME/cmd
vi test.groovy

Put the following in test.groovy :

for (int i = 0;i < 10;i++) {
 System.out.println("CRaSH is cool !");
}

In this example, we create a command by using Java syntax. It's because Groovy
understand Java Syntax. So you could begin to develop your command in Java and when
you want try cool Groovy stuff.

2.3. refresh console
Type help again at prompt and you will see command.test

Page 8 of 12

 % help
Try one of these commands with the -h or --help switch:

NAME DESCRIPTION
clock
dashboard
date show the current time
env display the term env
filter
hello
help provides basic help
java various java language commands
jdbc JDBC connection
jmx Java Management Extensions
jndi Java Naming and Directory Interface
jpa Java persistance API
jvm JVM informations
log logging commands
man format and display the on-line manual pages
shell shell related command
sleep sleep for some time
sort Sort a map
system vm system properties commands
test
thread JVM thread commands

Page 9 of 12

3
How to print an array

3.1. Exemple
Here is an example for printing an array :

import org.crsh.text.ui.UIBuilder

UIBuilder ui = new UIBuilder();

ui.table(separator: dashed) {
 header(decoration: bold, foreground: black, background: white) {
 label("ATTRIBUTE NAME"); label("ACCESS"); label("TYPE"); label("DESCRIPTION"); label("ATTRIBUTE VALUE")
 }

 for(Attr tmpAttr : lst) {
 if (null != tmpAttr) {
 row() {
 label(tmpAttr.name, foreground: red);
 label(tmpAttr.access);
 label(tmpAttr.type);
 label(tmpAttr.desc);
 label(tmpAttr.attrs.toString());
 }
 }
 }
}
out << ui;

3.2. Table Elements
To define an array, you will use elements like header, label ... If you want to see an example, edit
dashboard.groovy in $CRASH_HOME/cmd/base/

3.3. table

Define table.

Page 10 of 12

3.3.1. label

Print a label.

3.3.2. columns

Define columns.

e.g : columns: [1]

3.3.3. rows

Define rows.

rows: [1,1]

3.3.4. header

Define header.

header element

3.3.5. eval

Execute an other CRaSH command.

eval {
 execute("jvm heap")
}

3.4. attributes
Attribute can be add to table element.

3.4.1. border

Define a border.

e.g: border: dashed

3.4.2. row

3.4.3. separator

Define separator style.

e.g : dashed,star

Page 11 of 12

3.4.4. overflow

overflow ?

3.4.5. leftCellPadding

Left align in cell.

3.4.6. rightCellPadding

Right align in cell

e.g : rightCellPadding: 1

3.5. styles
Class contains style that we will use when making elements (e.g :org.crsh.text.Style

header)

3.5.1. bold

Type : boolean

e.g : bold: true

3.5.2. underline

Type : boolean

3.5.3. blink

Type : boolean

3.5.4. fg, foreground

Type : Color

fg: black

3.5.5. bg, background

Type : Color

bg: white

Page 12 of 12

4
Attaching to a running JVM

This chapter provides various recipes using the attach mechanism of CRaSH.

4.1. Expose several already running JVM via SSH using
In this recipe you will learn how to attach CRaSH to several JVM running on the local host. Each
JVM will be accessible using the SSH connector. To achieve this goal we need to

attach CRaSH to one or several virtual machines

use the non-interactive mode

set the SSH port to 0 to avoid port collisions

crash.sh --non-interactive --property crash.ssh.port=0 PID1 PID2 PID3 ...

The execution of CRaSH will last a few seconds, the process will end when all JVM will have their
own agent.

