
CRaSH
CRaSH reference guide

Julien Viet

eXo Platform
Copyright © 2011 eXo Platform SAS

Table of Contents

Preface

1. Running CRaSH
1.1. Standalone
1.2. Embedded mode

2. Interacting with the shell
2.1. Shell usage
2.2. Command usage
2.3. Base commands

3. Configuration
3.1. Configuring the standalone or attach mode
3.2. Configuring the web application mode
3.3. Configuration properties

4. Developers
4.1. Developping commands
4.2. Parameter annotations: Don't Repeat Yourself
4.3. Command context
4.4. Adding style
4.5. Inter command API

5. Extending CRaSH
5.1. Embedding CRaSH
5.2. Pluggable authentication

6. JCR extension
6.1. JCR implementations
6.2. JCR commands
6.3. SCP usage

7. Hey, I want to contribute!

List of Examples

1.1. Embedding CRaSH in a web application
1.2. Embedding CRaSH in Spring
1.3. Spring managed authentication plugin
1.4. Custom authentication bean in spring.xml
2.1. Remove all nt:unstructed nodes
2.2. Update the security of all nt:unstructed nodes
2.3. Add the mixin mix:referenceable to any node of type nt:file or nt:folder
4.1. Our custom value type
4.2. The custom value type declared in META-INF/services/org.crsh.cli.type.ValueType
4.3. The command context
4.4. Using shell session
4.5. Obtaining a Spring bean
4.6. The invocation context
4.7. Printing on the shell
4.8. Reading on the console
4.9. Decorating and coloring text

4.10. Printing styled text
4.11. Styling with the leftshift operator
4.12. dbscript.groovy

Preface
The Common Reusable SHell (CRaSH) deploys in a Java runtime and provides interactions with
the JVM. Commands are written in Groovy and can be developped at runtime making the
extension of the shell very easy with fast development cycle.

Page 5 of 73

1
Running CRaSH

There are several ways to run CRaSH, as a standalone application it controls its own JVM or as an
embedded service in an existing runtime like a web application or a Spring application.

Page 6 of 73

1.1. Standalone

1.1.1. Standalone mode

The standalone mode allows you to run CRaSH from the command line directly. It provides the
same functionality as the war deployment but does not require a web container as it runs its own
virtual machine. The directory in the application contains the standalone distribution.crash

The bin directory can be added to the system path, it contains the script that/crash/bin crash.sh
will start the standalone mode, for instance you can set it up this way:

> export PATH=/.../crash/bin:$PATH
> crash.sh

 .~ ~. |`````````, .'. ..'''' | |
| |'''|''''' .''```. .'' |_________|
| | `. .' `. ..' | |
 `.______.' | `. .' `.'' | | 1.0.0-cr2-SNAPSHOT

Follow and support the project on http://vietj.github.com/crash
Welcome to jerry + !
It is Thu Apr 12 21:19:35 CEST 2012 now

Let's review quickly what you can find in standalone crash:

The directory contains the script and the standalone crash jar filebin crash.sh

The directory contains the configuration properties and JVM loggingconf crash.properties
configuration logging.properties

The directory contains the commands that will be available in crash by default itcmd
contains a few example commands

The directory contains the various libraries used by crash, you should place additional jarlib
files there

1.1.2. Attach mode

The attach mode allows you to attach CRaSH to a JVM located on the same host with the attach
API provided by the Hotspot JVM. It is the standalone mode attached to a running JVM specified
by a process id. CRaSH will hook into the targetted JVM instead of the JVM started by CRaSH.
Let's see quickly an example of how to use it

Page 7 of 73

> jps
3165 RemoteMavenServer
20650 Test
20651 Jps

> crash.sh 20650

 .~ ~. |`````````, .'. ..'''' | |
| |'''|''''' .''```. .'' |_________|
| | `. .' `. ..' | |
 `.______.' | `. .' `.'' | | 1.0.0-cr2-SNAPSHOT

Follow and support the project on http://vietj.github.com/crash
Welcome to jerry + !
It is Thu Apr 12 22:09:23 CEST 2012 now
%

In this example we attached crash to the Test JVM. We obtained the Test JVM PID thanks to the
 command that belongs to the Java Platform. During this mode the commands are executed injps

the target JVM.

1.1.3. Configuration

The standalone mode relies on the class main method toorg.crsh.standalone.CRaSH

configure and run the shell. The startup scripts and configures this class. Youcrash.sh crash.bar
can tweak those scripts to your environment, let's review the options and arguments of :CRaSH

1.1.3.1. option--cmd

The option specifies a directory containing command source files. Such directory contains--cmd
commands as files, commands can be in directories for grouping purpose. Several folders.groovy
can be specified by repeating the option.

1.1.3.2. option--cmd-mode

The standalone shell search commands in folders (specified with the option and in the--cmd
classpath (under the / folder). The option defines how to handle the/crash/commands --cmd-mode
classpath commands:

The option value uses commands from directories and classpath.read

The option value scans the classpath during the startup and copies the commands incopy
the first command folder, then commands are used from the folders. This value requires at
least one command directory to be specified for extracting the commands.

1.1.3.3. option--conf

The option specifies a directory containing configuration files. Several folders can be--conf
specified by repeating the option.

1.1.3.4. option--conf-mode

The standalone shell search configuration files in folders (specified with the option and in the--conf
classpath (under the / folder). The option defines how to handle the classpath/crash --conf-mode
configuration:

Page 8 of 73

The option value uses configuration files from directories and classpath.read

The option value scans the classpath during the startup and copies the files in the firstcopy
configuration folder, then configuration are used from the folders. This value requires at least
one conf directory to be specified for extracting the configuration files.

1.1.3.5. option--property

The option sets and overrides a shell configuration property, the value follows the pattern --cmd
, for instance:a=b

crash.sh --property crash.telnet.port=3000

1.1.3.6. option--non-interactive

The option disable the usage of the JVM input and output.--non-interactive

crash.sh --non-interactive

1.1.3.7. argumentspid

The main has an optional list of arguments that are JVM org.crsh.standalone.CRaSH

. When one or several JVM process id are specified, CRaSH will dynamically attach toprocess id
this virtual machine and will be executed in that machine. By default the two JVM will communicate
with a socket unless the option is set.non-interactive

When more than one process id is specified, the option must be set becausenon-interactive
CRaSH will not be able to aggregate two command lines in the same terminal.

1.1.4. Resource extraction

When the options or are set to the , CRaSH will scan the classpath--cmd-mode --conf-mode copy
and extract the resources in the corresponding directory.

The default value of these options is however no copy happens unless at least one directorycopy
for extracting the resources is specified, therefore

The does nothing by defaultorg.crsh.standalone.CRaSH

The or extracts the resources in the corresponding directory as the crash.sh crash.bat cmd
and directories are specifiedconf

To prevent any resource copying the value should be used/read

Page 9 of 73

1.2. Embedded mode

1.2.1. Embedding in a web app

CRaSH can use a standard web archive to be deployed in a web container. The war file is used for
its packaging capabilities and triggering the CRaSH life cycle start/stop. In this mode CRaSH has
two packaging available:

A war file found under provides the base CRaSH functionnalitiescore deploy/core/crash.war

A war file found under provides additional Java Contentgatein deploy/gatein/crash.war
Repository (JCR) features but deploys only in a GateIn server (Tomcat or JBoss). It extends
the core packaging and adds

JCR browsing and interactions

SCP support for JCR import and export

You have to copy the in the appropriate server, regardless of the packaging used.crash.war

If you want you can embed CRaSH in your own configuration:web.xml

Example 1.1. Embedding CRaSH in a web application

<web-app>
 <listener>
 org.crsh.plugin.WebPluginLifeCycle<listener-class> </listener-class>
 </listener>
</web-app>

1.2.2. Embedding in Spring

CRaSH can be easily embedded and configured in a Spring configuration

1.2.2.1. Embedding as a Spring bean

Here is an example of embedding crash:

Page 10 of 73

Example 1.2. Embedding CRaSH in Spring

 = = =<beans xmlns "http://www.springframework.org/schema/beans" xmlns:xsi "http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation "http://www.springframework.org/schema/beans http://www.springframework.org/schema/beans/spring-beans-3.0.xsd">

 =<bean class "org.crsh.spring.SpringBootstrap">
 =<property name "config">
 <props>
 <!-- VFS configuration -->
 = 1<prop key "crash.vfs.refresh_period"> </prop>

 <!-- SSH configuration -->
 = 2000<prop key "crash.ssh.port"> </prop>

 <!-- Optional SSH timeouts -->
 = 300000<prop key "crash.ssh.auth-timeout"> </prop>
 = 300000<prop key "crash.ssh.idle-timeout"> </prop>

 <!-- Telnet configuration -->
 = 5000<prop key "crash.telnet.port"> </prop>

 <!-- Authentication configuration -->
 = simple<prop key "crash.auth"> </prop>
 = admin<prop key "crash.auth.simple.username"> </prop>
 = admin<prop key "crash.auth.simple.password"> </prop>
 </props>
 </property>
 </bean>

</beans>

The configuration properties are set as properties with the property of the config
 bean.SpringBootstrap

Any Spring managed beans that extend will be automaticallyorg.crsh.plugin.CRaSHPlugin

registered as plugins in addit ion to those declared in
.META-INF/services/org.crsh.plugin.CRaSHPlugin

For example, the following implements a CRaSH authentication plugin that uses a JDBC
DataSource managed by Spring:

Page 11 of 73

Example 1.3. Spring managed authentication plugin

package example;

 java.sql.Connection;import
 java.sql.PreparedStatement;import
 java.sql.ResultSet;import

 javax.sql.DataSource;import

 org.crsh.auth.AuthenticationPlugin;import
 org.crsh.plugin.CRaSHPlugin;import
 org.springframework.beans.factory.annotation.Autowired;import
 org.springframework.stereotype.Component;import

@Component("dbCrshAuth")
 DbCrshAuthPlugin CRaSHPlugin<AuthenticationPlugin>public class extends

 AuthenticationPlugin {implements

 @Autowired
 DataSource dataSource;private

 @Override
 AuthenticationPlugin getImplementation() {public
 ;return this
 }

 @Override
 authenticate(String username, String password)public boolean
 Exception {throws
 Connection conn = dataSource.getConnection();

 PreparedStatement statement = conn
 .prepareStatement();"SELECT COUNT(*) FROM users WHERE username = ? AND password = ?"
 statement.setString(, username);1
 statement.setString(, password);2

 ResultSet rs = statement.executeQuery();
 rs.getInt() >= ;return 1 1
 }

 @Override
 String getName() {public
 ;return "dbCrshAuth"
 }

 setDataSource(DataSource dataSource) {public void
 .dataSource = dataSource;this
 }
}

The above code uses Spring annotation driven beans, but this works the same with beans
configured in XML:

Page 12 of 73

Example 1.4. Custom authentication bean in spring.xml

 = = =<beans xmlns "http://www.springframework.org/schema/beans" xmlns:xsi "http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation "http://www.springframework.org/schema/beans http://www.springframework.org/schema/beans/spring-beans-3.0.xsd">

 =<bean class "example.DbCrshAuthPlugin">
 = =<property name "dataSource" ref "dataSource"/>
 </bean>

</beans>

1.2.2.2. Embedding in a Spring web app

In case you are embedding CRaSH in a Spring application running with a servlet container, the
bean can be used instead of org.crsh.spring.SpringWebBootstrap

. The extends the org.crsh.spring.SpringBootstrap SpringWebBootstrap

 class and adds the directory to the command path.SpringBootstrap WEB-INF/crash

An example packaging comes with the CRaSH distribution, a war file found under spring
 provides the base CRaSH functionnalities bootstrapped by the Springdeploy/spring/crash.war

Framework. It can be used as an example for embedding CRaSH in Spring.

This example is bundled with a command that shows how the Spring factory or beans canspring
be accessed within a CRaSH command.

Page 13 of 73

2
Interacting with the shell

Page 14 of 73

2.1. Shell usage

2.1.1. Connection

You need to connect using telnet, SSH or to use the shell. The last method is a specialdirectly
mode using the JVM input and output.

2.1.1.1. Telnet access

Telnet connection is done on port 5000:

(! 520)-> telnet localhost 5000
Trying ::1...
Connected to localhost.
Escape character is '^]'.

 .~ ~. |`````````, .'. ..'''' | |
| |'''|''''' .''```. .'' |_________|
| | `. .' `. ..' | |
 `.______.' | `. .' `.'' | | 1.2.10

Follow and support the project on http://vietj.github.com/crash
Welcome to julien.local + !
It is Fri Dec 03 16:20:40 CET 2010 now

The command disconnect from the shell.bye

2.1.1.2. SSH access

SSH connection is done on port 2000 with the password : crash

juliens-macbook-pro:~ julien$ ssh -p 2000 -l root localhost
root@localhost's password:
CRaSH 1.2.10 (http://vietj.github.com/crash)
Welcome to juliens-macbook-pro.local!
It is Fri Jan 08 21:12:53 CET 2010 now.
%

The command disconnect from the shell.bye

2.1.1.3. Native access

A third mode is available for standalone CRaSH usage where it uses the JVM native input and
output. When you run in standalone, CRaSh will be available just after the JVM is launched.

Page 15 of 73

2.1.2. Features

Line edition: the current line can be edited via left and right arrow keys

History: the key up and key down enable history browsing

Quoting: simple quotes or double quotes allow to insert blanks in command options and
arguments, for instance or . One quote style can quote another, like "old boy" 'old boy' "hi, it's

.me"

Completion: an advanced completion system is available

2.2. Command usage

2.2.1. Getting basic help

The command will display the list of known commands by the shell.help

[/]% help
% help
Try one of these commands with the -h or --help switch:

 cd changes the current node
 commit saves changes
 consume collects a set of nodes
 cp copy a node to another
 env display the term env
 exportworkspace Export a workspace on the file system (experimental)
 fail Fails
 help provides basic help
 importworkspace Import a workspace from the file system (experimental)
 invoke Invoke a static method
 log logging commands
 ls list the content of a node
 man format and display the on-line manual pages
 mixin mixin commands
 mv move a node
 node node commands
 produce produce a set of nodes
 pwd print the current node path
 rm remove one or several node or a property
 rollback rollback changes
 select execute a JCR sql query
 setperm modify the security permissions of a JCR node
 sleep sleep for some time
 thread vm thread commands
 version versioning commands
 wait Invoke a static method
 ws workspace commands
 xpath execute a JCR xpath query

Page 16 of 73

2.2.2. Command line usage

The basic CRaSH usage is like any shell, you just type a command with its options and arguments.
However it is possible to compose commands and create powerful combinations.

2.2.2.1. Basic command usage

Typing the command followed by options and arguments will do the job

% ls /
...

2.2.2.2. Command help display

Any command help can be displayed by using the -h argument:

% ls -h
usage: ls [-h | --help] [-h | --help] [-d | --depth] path

 [-h | --help] command usage
 [-h | --help] command usage
 [-d | --depth] Print depth
 path the path of the node content to list

In addition of that, commands can have a complete manual that can be displayed thanks to the
 command:man

Page 17 of 73

% man ls
NAME
 ls - list the content of a node

SYNOPSIS
 ls [-h | --help] [-h | --help] [-d | --depth] [-d | --depth] path

DESCRIPTION
 The ls command displays the content of a node. By default it lists the content of the current node, however it also
 accepts a path argument that can be absolute or relative.

 [/]% ls
 /
 +-properties
 | +-jcr:primaryType: nt:unstructured
 | +-jcr:mixinTypes: [exo:owneable,exo:privilegeable]
 | +-exo:owner: '__system'
 | +-exo:permissions: [any read,*:/platform/administrators read,*:/platform/administrators add_node,*:/platform/administrators set_property,*:/platform/administrators remove]
 +-children
 | +-/workspace
 | +-/contents
 | +-/Users
 | +-/gadgets
 | +-/folder

PARAMETERS
 [-h | --help]
 Provides command usage

 [-h | --help]
 Provides command usage

 [-d | --depth]
 Print depth

 path
 the path of the node content to list

2.2.2.3. Advanced command usage

A CRaSH command is able to consume and produce a stream of object, allowing complex
interactions between commands where they can exchange stream of compatible objets. Most of
the time, JCR nodes are the objects exchanged by the commands but any command is free to
produce or consume any type.

By default a command that does not support this feature does not consume or produce anything.
Such commands usually inherits from the class that doesorg.crsh.command.ClassCommand

not care about it. If you look at this class you will see it extends the the
.org.crsh.command.BaseCommand

More advanced commands inherits from class that specifiesorg.crsh.command.BaseCommand

two generic types and :<C> <P>

 is the type of the object that the command consumes<C>

Page 18 of 73

 is the type of the object that the command produces<P>

The command composition provides two operators:

The pipe operator allows to stream a command output stream to a command input stream|

The distribution operator allows to distribute an input stream to several commands and to+
combine the output stream of several commands into a single stream.

2.2.2.4. Connecting a command to a command through a pipe<Void,Node> <Node,Void>

Example 2.1. Remove all nt:unstructed nodes

% select * from nt:unstructed | rm

2.2.2.5. Connecting a command to two commands through a<Void,Node> <Node,Void>

pipe

Example 2.2. Update the security of all nt:unstructed nodes

% select * from nt:unstructured | setperm -i any -a read + setperm -i any -a write

2.2.2.6. Connecting two command to a commands through a<Void,Node> <Node,Void>

pipe

Example 2.3. Add the mixin mix:referenceable to any node of type nt:file or nt:folder

% select * from nt:file + select * from nt:folder | addmixin mix:referenceable

2.2.2.7. Mixed cases

When a command does not consume a stream but is involved in a distribution it will not receive
any stream but will be nevertheless invoked.

Likewise when a command does not produce a stream but is involved in a distribution, it will not
produce anything but will be nevertheless invoked.

Page 19 of 73

2.3. Base commands

2.3.1. commandsleep

NAME
 sleep - sleep for some time

SYNOPSIS
 sleep [-h | --help] time

PARAMETERS
 [-h | --help]
 Display this help message

 time
 sleep time in seconds

2.3.2. commandman

NAME
 man - format and display the on-line manual pages

SYNOPSIS
 man [-h | --help] command

PARAMETERS
 [-h | --help]
 Display this help message

 command
 the command

2.3.3. commandlog

NAME
 log add - create one or several loggers

SYNOPSIS
 log [-h | --help] add ... name

PARAMETERS
 [-h | --help]
 Display this help message

 ... name
 The name of the logger

Page 20 of 73

NAME
 log set - configures the level of one of several loggers

SYNOPSIS
 log [-h | --help] set [-l | --level] ... name

DESCRIPTION
 The set command sets the level of a logger. One or several logger names can be specified as arguments
 and the -l option specify the level among the trace, debug, info, warn and error levels. When no level is
 specified, the level is cleared and the level will be inherited from its ancestors.

 % logset -l trace foo
 % logset foo

 The logger name can be omitted and instead stream of logger can be consumed as it is a <Logger,Void> command.
 The following set the level warn on all the available loggers:

 % log ls | log set -l warn

PARAMETERS
 [-h | --help]
 Display this help message

 [-l | --level]
 The logger level to assign among {trace, debug, info, warn, error}

 ... name
 The name of the logger

Page 21 of 73

NAME
 log send - send a message to a logger

SYNOPSIS
 log [-h | --help] send [-m | --message] [-l | --level] name

DESCRIPTION
 The send command log one or several loggers with a specified message. For instance the following impersonates
 the javax.management.mbeanserver class and send a message on its own logger.

 #% log send -m hello javax.management.mbeanserver

 Send is a <Logger, Void> command, it can log messages to consumed log objects:

 % log ls | log send -m hello -l warn

PARAMETERS
 [-h | --help]
 Display this help message

 [-m | --message]
 The message to log

 [-l | --level]
 The logger level to assign among {trace, debug, info, warn, error}

 name
 The name of the logger

Page 22 of 73

NAME
 log ls - list the available loggers

SYNOPSIS
 log [-h | --help] ls [-f | --filter]

DESCRIPTION
 The logls command list all the available loggers., for instance:

 % logls
 org.apache.catalina.core.ContainerBase.[Catalina].[localhost].[/].[default]
 org.apache.catalina.core.ContainerBase.[Catalina].[localhost].[/eXoGadgetServer].[concat]
 org.apache.catalina.core.ContainerBase.[Catalina].[localhost].[/dashboard].[jsp]
 ...

 The -f switch provides filtering with a Java regular expression

 % logls -f javax.*
 javax.management.mbeanserver
 javax.management.modelmbean

 The logls command is a <Void,Logger> command, therefore any logger produced can be consumed.

PARAMETERS
 [-h | --help]
 Display this help message

 [-f | --filter]
 A regular expressions used to filter the loggers

2.3.4. commandthread

NAME
 thread stop - stop vm threads

SYNOPSIS
 thread [-h | --help] stop ... threads

DESCRIPTION
 Stop VM threads.

PARAMETERS
 [-h | --help]
 Display this help message

 ... threads
 the thread ids to stop

Page 23 of 73

NAME
 thread interrupt - interrupt vm threads

SYNOPSIS
 thread [-h | --help] interrupt ... threads

DESCRIPTION
 Interrup VM threads.

PARAMETERS
 [-h | --help]
 Display this help message

 ... threads
 the thread ids to interrupt

NAME
 thread ls - list the vm threads

SYNOPSIS
 thread [-h | --help] ls [-n | --name] [-g | --group] [-s | --state]

PARAMETERS
 [-h | --help]
 Display this help message

 [-n | --name]
 Filter the threads with a glob expression on their name

 [-g | --group]
 Filter the threads with a glob expression on their group

 [-s | --state]
 Filter the threads by their status (new,runnable,blocked,waiting,timed_waiting,terminated)

Page 24 of 73

NAME
 thread top - thread top

SYNOPSIS
 thread [-h | --help] top [-n | --name] [-g | --group] [-s | --state]

PARAMETERS
 [-h | --help]
 Display this help message

 [-n | --name]
 Filter the threads with a glob expression on their name

 [-g | --group]
 Filter the threads with a glob expression on their group

 [-s | --state]
 Filter the threads by their status (new,runnable,blocked,waiting,timed_waiting,terminated)

NAME
 thread dump - dump vm threads

SYNOPSIS
 thread [-h | --help] dump ... threads

DESCRIPTION
 Dump VM threads.

PARAMETERS
 [-h | --help]
 Display this help message

 ... threads
 the thread ids to dump

2.3.5. commandsystem

NAME
 system gc - call garbage collector

SYNOPSIS
 system [-h | --help] gc

PARAMETERS
 [-h | --help]
 Display this help message

Page 25 of 73

NAME
 system propls - list the vm system properties

SYNOPSIS
 system [-h | --help] propls [-f | --filter]

PARAMETERS
 [-h | --help]
 Display this help message

 [-f | --filter]
 filter the property with a regular expression on their name

NAME
 system propset - set a system property

SYNOPSIS
 system [-h | --help] propset name value

PARAMETERS
 [-h | --help]
 Display this help message

 name
 The name of the property

 value
 The value of the property

NAME
 system propget - get a system property

SYNOPSIS
 system [-h | --help] propget name

PARAMETERS
 [-h | --help]
 Display this help message

 name
 The name of the property

Page 26 of 73

NAME
 system proprm - remove a system property

SYNOPSIS
 system [-h | --help] proprm name

PARAMETERS
 [-h | --help]
 Display this help message

 name
 The name of the property

NAME
 system freemem - show free memory

SYNOPSIS
 system [-h | --help] freemem [-u | --unit] [-d | --decimal]

PARAMETERS
 [-h | --help]
 Display this help message

 [-u | --unit]
 The unit of the memory space size {(B)yte, (O)ctet, (M)egaOctet, (G)igaOctet}

 [-d | --decimal]
 The number of decimal (default 0)

NAME
 system totalmem - show total memory

SYNOPSIS
 system [-h | --help] totalmem [-u | --unit] [-d | --decimal]

PARAMETERS
 [-h | --help]
 Display this help message

 [-u | --unit]
 The unit of the memory space size {(B)yte, (O)ctet, (M)egaOctet, (G)igaOctet}

 [-d | --decimal]
 The number of decimal (default 0)

2.3.6. commandjdbc

Page 27 of 73

NAME
 jdbc props - show the database properties

SYNOPSIS
 jdbc [-h | --help] props

PARAMETERS
 [-h | --help]
 Display this help message

NAME
 jdbc close - close the current connection

SYNOPSIS
 jdbc [-h | --help] close

PARAMETERS
 [-h | --help]
 Display this help message

NAME
 jdbc table - describe the tables

SYNOPSIS
 jdbc [-h | --help] table ... tableNames

PARAMETERS
 [-h | --help]
 Display this help message

 ... tableNames
 the table names

NAME
 jdbc open - open a connection from JNDI bound datasource

SYNOPSIS
 jdbc [-h | --help] open globalName

PARAMETERS
 [-h | --help]
 Display this help message

 globalName
 The datasource JNDI name

Page 28 of 73

NAME
 jdbc connect - connect to database with a JDBC connection string

SYNOPSIS
 jdbc [-h | --help] connect [-u | --username] [-p | --password] [--properties] connectionString

PARAMETERS
 [-h | --help]
 Display this help message

 [-u | --username]
 The username

 [-p | --password]
 The password

 [--properties]
 The extra properties

 connectionString
 The connection string

NAME
 jdbc info - describe the database

SYNOPSIS
 jdbc [-h | --help] info

PARAMETERS
 [-h | --help]
 Display this help message

NAME
 jdbc execute - execute a SQL statement

SYNOPSIS
 jdbc [-h | --help] execute ... statement

PARAMETERS
 [-h | --help]
 Display this help message

 ... statement
 The statement

Page 29 of 73

NAME
 jdbc select - select SQL statement

SYNOPSIS
 jdbc [-h | --help] select ... statement

PARAMETERS
 [-h | --help]
 Display this help message

 ... statement
 The statement

NAME
 jdbc tables - describe the tables

SYNOPSIS
 jdbc [-h | --help] tables

PARAMETERS
 [-h | --help]
 Display this help message

2.3.7. commandjava

NAME
 java type - print information about a java type

SYNOPSIS
 java [-h | --help] type name

PARAMETERS
 [-h | --help]
 Display this help message

 name
 The full qualified type name

2.3.8. commandjmx

Page 30 of 73

NAME
 jmx get - Get managed bean attribute

SYNOPSIS
 jmx [-h | --help] get [-a | --attributes]

PARAMETERS
 [-h | --help]
 Display this help message

 [-a | --attributes]

NAME
 jmx find - Find managed bean

SYNOPSIS
 jmx [-h | --help] find [-p | --pattern]

PARAMETERS
 [-h | --help]
 Display this help message

 [-p | --pattern]
 The object name pattern

2.3.9. commandthread

NAME
 thread stop - stop vm threads

SYNOPSIS
 thread [-h | --help] stop ... threads

DESCRIPTION
 Stop VM threads.

PARAMETERS
 [-h | --help]
 Display this help message

 ... threads
 the thread ids to stop

Page 31 of 73

NAME
 thread interrupt - interrupt vm threads

SYNOPSIS
 thread [-h | --help] interrupt ... threads

DESCRIPTION
 Interrup VM threads.

PARAMETERS
 [-h | --help]
 Display this help message

 ... threads
 the thread ids to interrupt

NAME
 thread ls - list the vm threads

SYNOPSIS
 thread [-h | --help] ls [-n | --name] [-g | --group] [-s | --state]

PARAMETERS
 [-h | --help]
 Display this help message

 [-n | --name]
 Filter the threads with a glob expression on their name

 [-g | --group]
 Filter the threads with a glob expression on their group

 [-s | --state]
 Filter the threads by their status (new,runnable,blocked,waiting,timed_waiting,terminated)

Page 32 of 73

NAME
 thread top - thread top

SYNOPSIS
 thread [-h | --help] top [-n | --name] [-g | --group] [-s | --state]

PARAMETERS
 [-h | --help]
 Display this help message

 [-n | --name]
 Filter the threads with a glob expression on their name

 [-g | --group]
 Filter the threads with a glob expression on their group

 [-s | --state]
 Filter the threads by their status (new,runnable,blocked,waiting,timed_waiting,terminated)

NAME
 thread dump - dump vm threads

SYNOPSIS
 thread [-h | --help] dump ... threads

DESCRIPTION
 Dump VM threads.

PARAMETERS
 [-h | --help]
 Display this help message

 ... threads
 the thread ids to dump

2.3.10. commandsleep

NAME
 sleep - sleep for some time

SYNOPSIS
 sleep [-h | --help] time

PARAMETERS
 [-h | --help]
 Display this help message

 time
 sleep time in seconds

2.3.11. commandjpa

Page 33 of 73

NAME
 jpa close - Close the current JPA session

SYNOPSIS
 jpa [-h | --help] close

PARAMETERS
 [-h | --help]
 Display this help message

NAME
 jpa open - Open a JPA session

SYNOPSIS
 jpa [-h | --help] open jndiName

PARAMETERS
 [-h | --help]
 Display this help message

 jndiName

NAME
 jpa entity - Display JPA entity

SYNOPSIS
 jpa [-h | --help] entity name

PARAMETERS
 [-h | --help]
 Display this help message

 name

NAME
 jpa select - Execute select JPA query

SYNOPSIS
 jpa [-h | --help] select ... statements

PARAMETERS
 [-h | --help]
 Display this help message

 ... statements

Page 34 of 73

NAME
 jpa entities - List JPA entities

SYNOPSIS
 jpa [-h | --help] entities

PARAMETERS
 [-h | --help]
 Display this help message

2.3.12. commandenv

NAME
 env - display the term env

SYNOPSIS
 env [-h | --help]

PARAMETERS
 [-h | --help]
 Display this help message

Page 35 of 73

3
Configuration

CRaSH is configured by a set of properties, the properties are configured differently according to
the mode.

3.1. Configuring the standalone or attach mode
In standalone or attach mode configuration can be in the file or via the/conf/crash.properties
command line directly.

The file does not exist by default and it is created at the first run, so you shouldcrash.properties
run CRaSH at least once to extract the file:

% crash

You can also specify properties as a CRaSH command line argument with the option:-p

% crash -p crash.property_name=property_value

3.2. Configuring the web application mode
In the war file packaging, the configuration file can be found under

 file of the archive. Configuration can be overriden by Java Virtual/WEB-INF/crash/crash.properties
Machine system properties by using the same property name.

3.3. Configuration properties

3.3.1. Changing SSH server key

The key can be changed by replacing the file . Alternatively you canWEB-INF/sshd/hostkey.pem
configure the server to use an external file by using the parameter in the crash.ssh.keypath

. Uncomment the corresponding property and change the path to the key file.crash.properties

#crash.ssh.keypath=/path/to/the/key/file

Page 36 of 73

3.3.2. Changing telnet or SSH server ports

The ports of the server are parameterized by the and parameters incrash.ssh.port crash.telnet.port
the filecrash.properties

SSH configuration
crash.ssh.port=2000

Telnet configuration
crash.telnet.port=5000

3.3.3. Changing SSH authentication and idle timeouts

Default authentication and idle timeout of the SSH server are set to 10 minutes (600'000 ms). Both
timeouts can be configured in milliseconds with the and crash.ssh.auth-timeout

 parameters in the filecrash.ssh.idle-timeout crash.properties

SSH configuration 5 minutes = 5 * 60 * 1000 = 300'000
crash.ssh.auth-timeout=300000
crash.ssh.idle-timeout=300000

3.3.4. Removing telnet or SSH access

to remove the telnet access, remove the jar file in the WEB-INF/lib/crsh.shell.telnet-1.2.10.jar
.

to remove the SSH access, remove the jar file in the .WEB-INF/lib/crsh.shell.ssh-1.2.10.jar

3.3.5. Configuring shell default message

The file contains two closures that are evaluated/WEB-INF/crash/commands/base/login.groovy
each time a message is required

The closure returns the prompt messageprompt

The closure returns the welcome messagewelcome

Those closure can be customized to return different messages.

3.3.6. Configuring authentication

Authentication is used by the SSH server when a user authenticates. Authentication interface is
pluggable and has default implementations. The explainsSection 5.2, “Pluggable authentication ”
how to write a custom authentication plugin, in this section we cover the configuation of the
authentication.

The configuration of the authentication plugin is done via property, this is necessary because
several plugins can be detected by CRaSH, and the plugin is selected via the property crash.auth
that must match the authentication plugin name:

Page 37 of 73

crash.auth=simple

CRaSH comes out of the box with two authentication plugins.

3.3.6.1. Simple authentication

Simple authentication provides a simple username/password authentication configured with the
 and properties:crash.auth.simple.username crash.auth.simple.password

Authentication configuration
crash.auth=simple
crash.auth.simple.username=admin
crash.auth.simple.password=admin

3.3.6.2. Jaas authentation

Jaas authentication uses jaas to perform authentication configured with the crash.auth.jaas.domain
property to define the jaas domain to use when performing authentication:

Authentication configuration
crash.auth=jaas
crash.auth.jaas.domain=my-domain

3.3.6.3. Key authentication

Key authentication relies on a set of authorized public keys to perform authentication configured
with the property to specify the path of the keys. . The property should point tocrash.auth.key.path
a valid file. Obviously only a public key is required to be in the file, although it can also.pem
contain a private key (that will not be used).

Authentication configuration
crash.auth=key
crash.auth.key.path=/Users/julien/.ssh/id_dsa.pem

Page 38 of 73

4
Developers

4.1. Developping commands
A CRaSH command is written in the language. The Groovy language provides severalGroovy
signifiant advantages:

Commands can be bare scripts or can be a class

Java developers can write Groovy commands without learning much of it

Groovy is a dynamic language and can manipulate unknown types

Each command has a corresponding Groovy file that contains a command class that will be
invoked by the shell. The files are located in

 directory for the standalone distributioncmd

 directory for the web archive deployment/WEB-INF/crash/commands

New commands can directly be placed in the commands directory; however they can also be
placed in a sub directory of the command directory, which is useful to group commands of the
same kind.

In addition of that there are two special files called and that arelogin.groovy logout.groovy
executed upon login and logout of a user. They are useful to setup and cleanup things related to
the current user session.

4.1.1. Commands as a script

The simplest command can be a simple script that returns a string

return "Hello World";

The implicit variable can be used to send a message to the console:out

out.println("Hello World");

http://groovy.codehaus.org/

Page 39 of 73

It can be even Groovier:

out << "Hello World"

4.1.2. Commands as a class

Class can also be used for defining a command, it provides significant advantages over scripts:

A command can declare options and arguments for the command

Sub command style (git style) can be expressed easily

When the user types a command in the sell, the command line is parsed by the frameworkcmdline
and injected in the command class.

Let's study a simple class command example:

import org.crsh.cli.Command;
import org.crsh.cli.Usage;
import org.crsh.cli.Option;

class date {
 @Usage("show the current time")
 @Command
 Object main(
 @Usage("the time format")
 @Option(names=["f","format"])
 String format) {
 if (format == null)
 format = "EEE MMM d HH:mm:ss z yyyy";
 def date = new Date();
 return date.format(format);
 }
}

The command is pretty straightforward to grasp:

The annotation declares the method as a command@Command main

The command takes one optional option declared by the annotationformat @Option

The annotation describes the usage of the command and its parameters@Usage

% date
Thu Apr 19 15:44:05 CEST 2012

The annotation is important because it will give a decent human description of the@Usage

command

Page 40 of 73

% date -h
usage: date [-h | --help] [-f | --format]

 [-h | --help] command usage
 [-f | --format] the time format

4.1.3. Sub commands

A class can hold several commands allowing a single file to group several commands, let's study
the JDBC command structure:

@Usage("JDBC connection")
class jdbc {

 @Usage("connect to database with a JDBC connection string")
 @Command
 public String connect(
 @Usage("The username")
 @Option(names=["u","username"])
 String user,
 @Usage("The password")
 @Option(names=["p","password"])
 String password,
 @Usage("The extra properties")
 @Option(names=["properties"])
 Properties properties,
 @Usage("The connection string")
 @Argument
 String connectionString) {
 ...
 }

 @Usage("close the current connection")
 @Command
 public String close() {
 ...
 }
}

We can see that the class declares two commands and , they are invoked thisconnect close

way:

% jdbc connect jdbc:derby:memory:EmbeddedDB;create=true
Connected to data base : jdbc:derby:memory:EmbeddedDB;create=true
% jdbc close
Connection closed

4.1.4. Command line annotations

Let's review the various annotations for declaring a command.

4.1.4.1. @org.crsh.cli.Command

Defines a command method, when using a mono command the method should be named :main

Page 41 of 73

public sample {class

 @Command
 main() {public void
 ...
 }
}

Using this annotation automatically turns a class into a class command.

Previous versions of CRaSH required command classes to extend the
 class, this is not necessary anymore as the org.crsh.command.CRaSHCommand

 annotation is enough.@Command

Sub commands will simply declares several methods:

public sample {class

 @Command
 sub1() {public void
 ...
 }

 @Command
 sub2() {public void
 ...
 }
}

4.1.4.2. @org.crsh.cli.Option

Declares an option, the member must be specified: single letter name are turned into posixnames
style option (single hyphen) other names are turned into GNU style option (double hyphen).
Several names can specified as aliases of the same option. Option can be declared as method
parameters or a class fields.

public sample {class

 @Option(names = ["o", "opt1"])
 String opt1;private

 @Command
 sub1(String opt2) {public void @Option(names = ["opt2"])
 ...
 }
}

Page 42 of 73

> sample foo
> sample -o foo
> sample --opt1 foo sub1
> sample sub1 --opt2 bar
> sample --opt1 foo foo sub1 --opt2 bar

4.1.4.3. @org.crsh.cli.Argument

Declares an argument, this annotation should be declares as method parameters.

public sample {class

 @Command
 sub1(String arg) {public void @Argument
 ...
 }
}

> sample sub1
> sample sub1 foo

4.1.4.4. @org.crsh.cli.Required

By default a parameter is optional, the annotation can be used to force the user to@Required

specify a parameter:

public sample {class

 @Command
 sub1(String arg) {public void @Required @Argument
 ...
 }
}

4.1.4.5. and @org.crsh.cli.Usage @org.crsh.cli.Man

Those annotations are useful for documenting commands help and manual:

@Usage("sample commands")
 sample {public class

 @Command
 @Usage("command description, begins with lower case")
 @Man("Verbose descrition of the argument, it should begin with an upper case")
 sub1(public void
 @Usage("argument description, begins with a lower case")
 @Man("Verbose description of the argument, it should begin with an upper case")
 String arg) {@Argument
 ...
 }
}

Page 43 of 73

 specifies the usage, rather a short description@Usage

 provides the manuel, rather a verbose description@Man

4.1.5. Parameter types

Option and argument parameters are represented by types. The string type is universal andsimple
will work with any value provided by the user, other types will require parsing.

4.1.5.1. Builtin types

CRaSH provides supports a few builtin simple types other than string:

 typeInteger

 typeBoolean

 typejava.util.Properties

 typejavax.management.ObjectName

 typesEnum

Boolean type is special because it does not need a value when combined with options. The option
declaration is enough to set the value to true:

public sample {class

 @Command
 sub1(Boolean opt) {public void @Option(names = ["o"])
 ...
 }
}

The option will be true with:

> sample sub1 -o

4.1.5.2. Providing your own type

Providing a custom type is possible, CRaSH uses the discovery mechanism toServiceLoader

discover custom types. Custom types are implemented by a org.crsh.cli.type.ValueType
subclass and implement its method:parse

Page 44 of 73

Example 4.1. Our custom value type

package my;

 CustomValueType ValueType<Custom> {public class extends

 CustomValueType() {public
 (Custom.); super class
 }

 @Override
 <S Custom> S parse(Class<S> type, String s) Exception {public extends throws
 type.cast(Custom(s)); return new
 }
}

The custom type is passed to the super class

The parse method should reutrn an instance of the type

The method uses the generic type because the implementation of enum typesparse <S>

has an effective type which is a subclass of the base enum type.

In order to make the custom type discovered by CRaSH, a file named org.crsh.cli.type.ValueType
should be placed in the / directory of the jar containing the custom value type:/META-INF/services

Example 4.2. The custom value type declared in META-INF/services/org.crsh.cli.type.ValueType

my.CustomValueTpye

4.1.6. Parameter multiplicity

The multiplicity is the number of values expected by a parameter, the multiplicity with simple types
is always 1. The arity can also be when the type is used.several java.util.List

public sample {class

 @Command
 sub1(List<String> opts) {public void @Option(names = ["o"])
 ...
 }
}

The option can now accept several values:

> sample sub1 -o foo -o bar

Page 45 of 73

4.2. Parameter annotations: Don't Repeat Yourself
When one or several commands uses the same parameter (option or argument), there is the
opportunity to avoid repetition and define a custom annotation that can be used for declaring the
parameter:

@Retention(RetentionPolicy.RUNTIME)
@Usage("A color")
@Option(names = "c")

 PathOption {public @interface
}

The annotation can then be used instead for declaring an option:

public mycommand {class
 @Command
 foo(String color) {public void @ColorOption
 ...
 }
 @Command
 bar(String color) {public void @ColorOption
 ...
 }
}

4.3. Command context
During the execution of a command, CRaSH provides a for interacting with it : the property context

 is resolved to an instance of , the invocationcontext org.crsh.command.InvocationContext

context class extends the . Let's have a look at thoseorg.crsh.command.CommandContext

types:

Example 4.3. The command context

/**
 * The command context provides the services for invoking a command.
 *
 * @author Julien Viet
 */

 CommandContext<P> InteractionContext<P>, RuntimeContext, Closeable {public interface extends

 isPiped();boolean

}

The provides access to the shell session as a .CommandContext Map<String, Object>

Session attributes can be accessed using this map, but they are also accessible as Groovy script
properties. It means that writing such code will be equivalent:

Page 46 of 73

Example 4.4. Using shell session

context.session[] = ; "foo" "bar"
out.println(bar);

Bind the session attribute foo with the value bar

The bar is resolved as an session attribute by Groovy

The provides also access to the shell attributes as a .CommandContext Map<String, Object>

Context attributes are useful to interact with object shared globally by the CRaSH environment:

When embedded in a web application context, attributes resolves to servlet context
attributes.

When embedded in Spring context, attributes resolve to Spring objects:

 returns the Spring factoryattributes.factory

 returns Spring beans, for example returns the attributes.beans attribute.beans.telnet
 beantelnet

When attached to a virtual machine, the context attributes has only a single
 entry that is the instrumentation java.lang.instrument.Instrumentation

instance obtained when attaching to a virtual machine.

Example 4.5. Obtaining a Spring bean

def bean = context.attributes.beans[];"TheBean"

Now let's examine the that extends the :InvocationContext CommandContext

Page 47 of 73

Example 4.6. The invocation context

 InvocationContext<P> CommandContext<P> {public interface extends

 /**
 * Returns the writer for the output.
 *
 * @return the writer
 */
 RenderPrintWriter getWriter();

 /**
 * Resolve a command invoker for the specified command line.
 *
 * @param s the command line
 * @return the command invoker
 * @throws ScriptException any script exception
 * @throws IOException any io exception
 */
 CommandInvoker<?, ?> resolve(String s) ScriptException, IOException;throws

}

The object is the command output, it can be used also via the property inPrintWriter out
Groovy scripts:

Example 4.7. Printing on the shell

context.writer.print(); "Hello"
out.print(); "hello"

Printing using the context writer

Printing using the out

The method can be used to get interactive information from the user during thereadLine

execution of a command.

Example 4.8. Reading on the console

def age = context.readLine(, false);"How old are you?"

Finally the , and methods are used when writing commands thatisPiped consume produce

exchange objects via the pipe mechanism.

Page 48 of 73

4.4. Adding style
CRaSH adds (since version 1.1) the support for colored text and text decoration. Each portion of
text printed has three style attributes:

 : bold, underline or blink, as the enum.Decoration org.crsh.text.Decoration

 color.Foreground

 color.Background

Available colors are grouped as the enum: black, red, green, yellow,org.crsh.text.Color

blue, magenta, cyan, white.

Decoration and colors can be applied with overloaded and methods provided byprint println

the . This printer is available as the implicit attribute or thanks to the ShellPrinterWriter out
 method..getWriter()context

Example 4.9. Decorating and coloring text

out.println(, red); "hello"
out.println(, red, blue); "hello"
out.println(, underline, red, blue); "hello"

Print hello in red color

Print hello in red with a red blue

Print hello in red underlined with a red blue

The combination of the decoration, background and foreground colors is a represented by thestyle
 object. Styles can be used like decoration and colors:org.crsh.text.Style

Example 4.10. Printing styled text

out.println(, style(red)); "hello"
out.println(, style(red, blue)); "hello"
out.println(, style(underline, red, blue)); "hello"

Print hello in red color

Print hello in red with a red blue

Print hello in red underlined with a red blue

Page 49 of 73

When using the print methods, the style will be used for the currently printed object. It is possible to
change the style permanently (until it is reset) using Groovy operator : leftshift <<

By default the operator prints output on the console. The overrides the<< ShellPrintWriter

operator to work with color, decoration and styles:

Example 4.11. Styling with the leftshift operator

out << red
out << underline
out << "hello"
out << reset;

Set red foreground color

Set underline

Print hello in underlined red

Reset style

Operators can also be combined on the same line providing a more compact syntax:

out << red << underline << << reset"hello"

out << style(underline, red, blue) << << reset"hello"

Throughout the examples we have used decoration, color and styles. CRaSH automatically
imports those classes so they can be used out of the box in any CRaSH command without
requiring prior import.

4.5. Inter command API
In this section we study how a command can reuse existing commands. Here is an example

Example 4.12. dbscript.groovy

jdbc.connect username:root, password:crash, "jdbc:derby:memory:EmbeddedDB;create=true"
jdbc.execute "create table derbyDB(num int, addr varchar(40))"
jdbc.execute "insert into derbyDB values (1956,'Webster St.')"
jdbc.execute "insert into derbyDB values (1910,'Union St.')"
jdbc.execute "select * from derbyDb"
jdbc.close

This script is written in Groovy and use Groovy DSL capabilities, let's study the first statement:

Page 50 of 73

the statement can be decomposed into two stepsjdbc.connect

the is resolved as the command itselfjdbc

the invokes the connect commandconnect

the and are considered as command optionsusername password

the SQL statement is the main"jdbc:derby:memory:EmbeddedDB;create=true"

argument of the command

It is equivalent to the shell command:

% jdbc connect --username root --password crash jdbc:derby:memory:EmbeddedDB;create=true

The rest of the script is fairly easy to understand, here is the output of the script execution:

% dbscript
Connected to data base : jdbc:derby:memory:EmbeddedDB;create=true
Query executed successfully
Query executed successfully
Query executed successfully
NUM ADDR
1956 Webster St.
1910 Union St.
Connection closed

Page 51 of 73

5
Extending CRaSH

5.1. Embedding CRaSH
The explains how to run CRaSH as a standalone or an embeddedChapter 1, Running CRaSH
service. We will study in this section the technical aspect of running application and show how
CRaSH can be embedded in specific environments.

The root class for reusing CRaSH is the class. Thisorg.crsh.plugin.PluginLifeCycle

class is abstract and it cannot be used directly, instead it should be subclasses for providing
specific behavior for running CRaSH. There are several subclasses using it:

The standalone bootstrap with the class : designedorg.crsh.standalone.Bootstrap

for using CRaSH with a real file system (i.e). It defines a specific layout forjava.io.File

locating resources (libraries, configuration and commands).

The embedded approaches

 : uses a org.crsh.plugin.WebPluginLifeCycle

javax.servlet.ServletContext

 : embeds CRaSH as a Spring beanorg.crsh.spring.SpringBootstrap

 : extends the andorg.crsh.spring.SpringWebBootstrap SpringBootstrap

uses the existing ServletContext

5.1.1. Standalone bootstrap

The class is a generic class that can be used to embed theorg.crsh.standalone.Bootstrap

shell in your Java programs Its usage is quite straighforward and configurable. The bootstrap is a
coarse grained approach and it needs a bit of configuration for running:

The properties is the used by CRaSH for loadingbaseLoader java.lang.ClassLoader

plugins, resources or command sources (under the / path. This property is/crash/commands
not modifiable and must be provided when the bootstrap is instantiated.

The properties provides the contextual properties used by CRaSH configurationconfig

such as crash.vfs.refresh_period

Page 52 of 73

The property provides the contextual attributes used by CRaSH available atattributes

runtime via the , it is useful for providing objects toorg.crsh.command.CommandContext

commands in a similar fashion to servlet context attributes

The property is a list of scanned by CRaSH for loading additionalcmdPath java.io.File

commands

The property is a list of scanned by CRaSH for loadingconfPath java.io.File

configuration files

Let's see an example on how to use it

5.1.2. Standalone CRaSH

The standalone shell is a Java class configurable and runnable from the command line that is used
by the standalone distribution. It is built upon the class.Section 5.1.1, “Standalone bootstrap ”

5.2. Pluggable authentication
Creating a custom authentication mechanism is done by implementing a CRaSH plugin that
provides an implementation of the interface. Let's study the AuthenticationPlugin simple
authentication plugin implementation.

The is the interface to implement in order to integrate CRaSH with anAuthenticationPlugin

authentication mechanism:

Page 53 of 73

public AuthenticationPlugin<C> {interface

 /** The authentication plugin to use. */
 PropertyDescriptor<String> AUTH = PropertyDescriptor.create(, (String)null,);"auth" "The authentication plugin"

 /**
 * The plugin that never authenticates, returns the name value <code>null</code>.
 */
 AuthenticationPlugin<Object> NULL = AuthenticationPlugin<Object>() {new
 Class<Object> getCredentialType() {public
 Object. ;return class
 }
 String getName() {public
 ;return "null"
 }
 authenticate(String username, Object password) Exception {public boolean throws
 false;return
 }
 };

 /**
 * Returns the authentication plugin name.
 *
 * @return the plugin name
 */
 String getName();

 /**
 * Returns the credential type.
 *
 * @return the credential type
 */
 Class<C> getCredentialType();

 /**
 * Returns true if the user is authentified by its username and credential.
 *
 * @param username the username
 * @param credential the credential
 * @return true if authentication succeeded
 * @throws Exception any exception that would prevent authentication to happen
 */
 authenticate(String username, C credential) Exception;boolean throws
}

The integration as a CRaSH plugin mandates to extend the class with the genericCRaSHPlugin

type :AuthenticationPlugin

Page 54 of 73

public SimpleAuthenticationPlugin class extends
 CRaSHPlugin<AuthenticationPlugin> implements
 AuthenticationPlugin {

 String getName() {public
 ;return "simple"
 }

 @Override
 AuthenticationPlugin getImplementation() {public
 ;return this
 }

 ...

}

The method returns the value that matchs the configurationgetName() simple crash.auth
property

The method returns the object that implements the getImplementation()

 class, this method is implemented from the AuthenticationPlugin CRaSHPlugin

abstract class, but in our case it simply returns because this

 is directly the implementation class.SimpleAuthenticationPlugin

Now let's study how the plugin retrieves the configuration properties
 and :crash.auth.simple.username crash.auth.simple.password

Page 55 of 73

public SimpleAuthenticationPlugin class extends
 CRaSHPlugin<AuthenticationPlugin> implements
 AuthenticationPlugin {

 PropertyDescriptor<String> SIMPLE_USERNAME =public static final
 PropertyDescriptor.create(
 ,"auth.simple.username"
 ,"admin"
);"The username"

 PropertyDescriptor<String> SIMPLE_PASSWORD =public static final
 PropertyDescriptor.create(
 ,"auth.simple.password"
 ,"admin"
);"The password"

 @Override
 Iterable<PropertyDescriptor<?>> createConfigurationCapabilities() {protected
 Arrays.<PropertyDescriptor<?>>asList(return
 SIMPLE_USERNAME,
 SIMPLE_PASSWORD);
 }

 String username;private

 String password;private

 @Override
 init() {public void
 PluginContext context = getContext();
 .username = context.getProperty(SIMPLE_USERNAME);this
 .password = context.getProperty(SIMPLE_PASSWORD);this
 }

 ...

}

The method returns the constants createConfigurationCapabilities()

 and that defines the configuration properties thatSIMPLE_USERNAME SIMPLE_PASSWORD

the plugin uses

The method is invoked by CRaSH before the plugin will be used, at this moment,init()

the configuration properties are retrieved from the plugin context with the method
 available in the base classgetContext() CRaSHPlugin

Finally the plugin needs to provide the method that implement theauthenticate()

authentication logic:

Page 56 of 73

 authenticate(String username, String password)public boolean
 Exception {throws
 .username != null &&return this
 .password != null &&this
 .username.equals(username) &&this
 .password.equals(password);this
 }

The logic is straightforward with an equality check of the username and password.

Last but not least we must declare our plugin to make it recognized by CRaSH, this is achieved
thanks to the class. CRaSH uses the for loadingjava.util.ServiceLoader ServiceLoader

plugins and the loader needs a file to be present in the jar file containing the class under the name
 containing the class name of theMETA-INF/services/org.crsh.plugin.CRaSHPlugin

plugin:

org.crsh.auth.SimpleAuthenticationPlugin

When all of this is done, the plugin and its service loader descriptor must be packaged in a jar file
and available on the classpath of CRaSH.

You can learn more about the by looking at the online java.util.ServiceLoader

javadoc

http://docs.oracle.com/javase/6/docs/api/java/util/ServiceLoader.html

Page 57 of 73

6
JCR extension

The CRaSH JCR extension allow to connect and interract with Java Content Repository
implementations.

6.1. JCR implementations

6.1.1. eXo JCR

todo

6.1.2. Apache Jackrabbit

CRaSH has been tested with Jackrabbit in the following mode : deployment as a resource
accessible via JNDI on JBoss 6.1.0.

Page 58 of 73

6.2. JCR commands

6.2.1. commandrepo

NAME
 repo info - show info about the current repository

SYNOPSIS
 repo [-h | --help] info

DESCRIPTION
 The info command print the descriptor of the current repository.

PARAMETERS
 [-h | --help]
 Display this help message

NAME
 repo ls - list the available repository plugins

SYNOPSIS
 repo [-h | --help] ls

DESCRIPTION
 The ls command print the available repository plugins.

PARAMETERS
 [-h | --help]
 Display this help message

Page 59 of 73

NAME
 repo use - changes the current repository

SYNOPSIS
 repo [-h | --help] use parameters

DESCRIPTION
 The use command changes the current repository used by for JCR commands. The command accepts a set of properties
 as main command argument that will be used to select a repository:

 % repo use parameterName=parameterValue;nextParameterName=nextParameterValue

 The parameters is specific to JCR plugin implementations, more details can be found thanks to the ls command.

PARAMETERS
 [-h | --help]
 Display this help message

 parameters
 The parameters used to instantiate the repository to be used in this session

6.2.2. commandws

Page 60 of 73

NAME
 ws login - login to a workspace

SYNOPSIS
 ws [-h | --help] login [-u | --username] [-p | --password] [-c | --container] workspaceName

DESCRIPTION

 This command login to a JCR workspace and establish a session with the repository.
 When you are connected the shell maintain a JCR session and allows you to interact with the session in a shell
 oriented fashion. The repository name must be specified and optionally you can specify a user name and password to
 have more privileges.

 Before performing a login operation, a repository must be first selected with the repo command, for instance:

 % repo use container=portal

 Once a repository is obtained the login operation can be done:

 % ws login portal-system
 Connected to workspace portal-system

 % ws login -u root -p gtn portal-system
 Connected to workspace portal-system

PARAMETERS
 [-h | --help]
 Display this help message

 [-u | --username]
 The user name

 [-p | --password]
 The user password

 [-c | --container]
 The portal container name (eXo JCR specific)

 workspaceName
 The name of the workspace to connect to

NAME
 ws logout - logout from a workspace

SYNOPSIS
 ws [-h | --help] logout

DESCRIPTION
 This command logout from the currently connected JCR workspace

PARAMETERS
 [-h | --help]
 Display this help message

Page 61 of 73

6.2.3. commandcd

NAME
 cd - changes the current node

SYNOPSIS
 cd [-h | --help] path

DESCRIPTION
 The cd command changes the current node path. The command used with no argument changes to the root
 node. A relative or absolute path argument can be provided to specify a new current node path.

 [/]% cd /gadgets
 [/gadgets]% cd /gadgets
 [/gadgets]% cd
 [/]%

PARAMETERS
 [-h | --help]
 Display this help message

 path
 The new path that will change the current node navigation

6.2.4. commandpwd

NAME
 pwd - print the current node path

SYNOPSIS
 pwd [-h | --help]

DESCRIPTION
 The pwd command prints the current node path, the current node is produced by this command.

 [/gadgets]% pwd
 /gadgets

PARAMETERS
 [-h | --help]
 Display this help message

Page 62 of 73

6.2.5. commandls

NAME
 ls - list the content of a node

SYNOPSIS
 ls [-h | --help] [-d | --depth] path

DESCRIPTION
 The ls command displays the content of a node. By default it lists the content of the current node, however it also
 accepts a path argument that can be absolute or relative.

 [/]% ls
 /
 +-properties
 | +-jcr:primaryType: nt:unstructured
 | +-jcr:mixinTypes: [exo:owneable,exo:privilegeable]
 | +-exo:owner: '__system'
 | +-exo:permissions: [any read,*:/platform/administrators read,*:/platform/administrators add_node,*:/platform/administrators set_property,*:/platform/administrators remove]
 +-children
 | +-/workspace
 | +-/contents
 | +-/Users
 | +-/gadgets
 | +-/folder

PARAMETERS
 [-h | --help]
 Display this help message

 [-d | --depth]
 The depth of the printed tree

 path
 The path of the node content to list

Page 63 of 73

6.2.6. commandcp

NAME
 cp - copy a node to another

SYNOPSIS
 cp [-h | --help] source target

DESCRIPTION
 The cp command copies a node to a target location in the JCR tree.

 [/registry]% cp foo bar

PARAMETERS
 [-h | --help]
 Display this help message

 source
 The path of the source node to copy

 target
 The path of the target node to be copied

6.2.7. commandmv

NAME
 mv - move a node

SYNOPSIS
 mv [-h | --help] source target

DESCRIPTION
 The mv command can move a node to a target location in the JCR tree. It can be used also to rename a node. The mv
 command is a <Node,Node> command consuming a stream of node to move them and producing nodes that were moved.

 [/registry]% mv Registry Registry2

PARAMETERS
 [-h | --help]
 Display this help message

 source
 The path of the source node to move, absolute or relative

 target
 The destination path absolute or relative

Page 64 of 73

6.2.8. commandrm

NAME
 rm - remove one or several node or a property

SYNOPSIS
 rm [-h | --help] ... paths

DESCRIPTION
 The rm command removes a node or property specified by its path either absolute or relative. This operation
 is executed against the JCR session, meaning that it will not be effective until it is commited to the JCR server.

 [/]% rm foo
 Node /foo removed

 It is possible to specify several nodes.

 [/]% rm foo bar
 Node /foo /bar removed

 rm is a <Node,Void> command removing all the consumed nodes.

PARAMETERS
 [-h | --help]
 Display this help message

 ... paths
 The paths of the node to remove

6.2.9. commandnode

Page 65 of 73

NAME
 node add - creates one or several nodes

SYNOPSIS
 node [-h | --help] add [-t | --type] ... paths

DESCRIPTION
 The addnode command creates one or several nodes. The command takes at least one node as argument, but it can
 take more. Each path can be either absolute or relative, relative path creates nodes relative to the current node.
 By default the node type is the default repository node type, but the option -t can be used to specify another one.

 [/registry]% addnode foo
 Node /foo created

 [/registry]% addnode -t nt:file bar juu
 Node /bar /juu created

 The addnode command is a <Void,Node> command that produces all the nodes that were created.

PARAMETERS
 [-h | --help]
 Display this help message

 [-t | --type]
 The name of the primary node type to create.

 ... paths
 The paths of the new node to be created, the paths can either be absolute or relative.

Page 66 of 73

NAME
 node set - set a property on the current node

SYNOPSIS
 node [-h | --help] set [-t | --type] propertyName propertyValue

DESCRIPTION
 The set command updates the property of a node.

 Create or destroy property foo with the value bar on the root node:

 [/]% set foo bar
 Property created

 Update the existing foo property:

 [/]% set foo juu

 When a property is created and does not have a property descriptor that constraint its type, you can specify it
 with the -t option

 [/]% set -t LONG long_property 3

 Remove a property

 [/]% set foo

 set is a <Node,Void> command updating the property of the consumed node stream.

PARAMETERS
 [-h | --help]
 Display this help message

 [-t | --type]
 The property type to use when it cannot be inferred

 propertyName
 The name of the property to alter

 propertyValue
 The new value of the property

Page 67 of 73

NAME
 node export - export a node to an nt file

SYNOPSIS
 node [-h | --help] export source target

DESCRIPTION
 Exports a node as an nt file in the same workspace:

 [/]% node export gadgets /gadgets.xml
 The node has been exported

PARAMETERS
 [-h | --help]
 Display this help message

 source
 The path of the exported node

 target
 The path of the exported nt:file node

NAME
 node import - imports a node from an nt file

SYNOPSIS
 node [-h | --help] import source target

DESCRIPTION
 Imports a node from an nt:file node located in the workspace:

 [/]% importnode /gadgets.xml /
 Node imported

PARAMETERS
 [-h | --help]
 Display this help message

 source
 The path of the imported nt:file node

 target
 The path of the parent imported node

6.2.10. commandmixin

Page 68 of 73

NAME
 mixin add - add a mixin to one or several nodes

SYNOPSIS
 mixin [-h | --help] add mixin ... paths

DESCRIPTION
 The add command addds a mixin to one or several nodes, this command is a <Node,Void> command, and can
 add a mixin from an incoming node stream, for instance:

 [/]% select * from mynode | mixin add mix:versionable

PARAMETERS
 [-h | --help]
 Display this help message

 mixin
 the mixin name to add

 ... paths
 the paths of the node receiving the mixin

NAME
 mixin remove - removes a mixin from one or several nodes

SYNOPSIS
 mixin [-h | --help] remove mixin ... paths

DESCRIPTION
 The remove command removes a mixin from one or several nodes, this command is a <Node,Void> command, and can
 remove a mixin from an incoming node stream, for instance:

 [/]% select * from mynode | mixin remove mix:versionable

PARAMETERS
 [-h | --help]
 Display this help message

 mixin
 the mixin name to remove

 ... paths
 the paths of the node receiving the mixin

Page 69 of 73

6.2.11. commandselect

NAME
 select - execute a JCR sql query

SYNOPSIS
 select [-h | --help] [-o | --offset] [-l | --limit] [-a | --all] ... query

DESCRIPTION
 Queries in SQL format are possible via the ##select## command. You can write a query with the same syntax defined
 by the specification and add options to control the number of results returned. By default the number of nodes is limited
 to 5 results:

 [/]% select * from nt:base
 The query matched 1114 nodes
 +-/
 | +-properties
 | | +-jcr:primaryType: nt:unstructured
 | | +-jcr:mixinTypes: [exo:owneable,exo:privilegeable]
 | | +-exo:owner: '__system'
 | | +-exo:permissions: [any read,*:/platform/administrators read,*:/platform/administrators add_node,*:/platform/administratorsset_property,*:/platform/administrators remove]
 +-/workspace
 | +-properties
 | | +-jcr:primaryType: mop:workspace
 | | +-jcr:uuid: 'a69f226ec0a80002007ca83e5845cdac'
 ...

 Display 20 nodes from the offset 10:

 [/]% select -o 10 -l 20 * from nt:base
 The query matched 1114 nodes
 ...

 It is possible also to remove the limit of displayed nodes with the -a option (you should use this option with care) :

 [/]% select -a * from nt:base
 The query matched 1114 nodes
 ...

 select is a <Void,Node> command producing all the matched nodes.

PARAMETERS
 [-h | --help]
 Display this help message

 [-o | --offset]
 The offset of the first node to display

 [-l | --limit]
 The number of nodes displayed, by default this value is equals to 5

 [-a | --all]
 Display all the results by ignoring the limit argument, this should be used with care for large result set

 ... query
 The query, as is

Page 70 of 73

6.2.12. commandxpath

NAME
 xpath - execute a JCR xpath query

SYNOPSIS
 xpath [-h | --help] [-o | --offset] [-l | --limit] [-a | --all] query

DESCRIPTION
 Executes a JCR query with the xpath dialect, by default results are limited to 5.All results matched by the query are produced by this command.

PARAMETERS
 [-h | --help]
 Display this help message

 [-o | --offset]
 The offset of the first node to display

 [-l | --limit]
 The number of nodes displayed, by default this value is equals to 5

 [-a | --all]
 Display all the results by ignoring the limit argument, this should be used with care for large result set

 query
 The query

6.2.13. commandcommit

NAME
 commit - saves changes

SYNOPSIS
 commit [-h | --help] path

DESCRIPTION
 Saves the changes done to the current session. A node can be provided to save the state of the
 this nodes and its descendants only.

PARAMETERS
 [-h | --help]
 Display this help message

 path
 The path of the node to commit

Page 71 of 73

6.2.14. commandrollback

NAME
 rollback - rollback changes

SYNOPSIS
 rollback [-h | --help] path

DESCRIPTION
 Rollbacks the changes of the current session. A node can be provided to rollback the state of the
 this nodes and its descendants only.

PARAMETERS
 [-h | --help]
 Display this help message

 path
 the path to rollback

6.2.15. commandversion

NAME
 version checkin - checkin a node

SYNOPSIS
 version [-h | --help] checkin path

DESCRIPTION
 Perform a node checkin

PARAMETERS
 [-h | --help]
 Display this help message

 path
 The node path to checkin

Page 72 of 73

NAME
 version checkout - checkout a node

SYNOPSIS
 version [-h | --help] checkout path

DESCRIPTION
 Perform a node checkout

PARAMETERS
 [-h | --help]
 Display this help message

 path
 The node path to checkout

6.3. SCP usage
Secure copy can be used to import or export content. The username/password prompted by the
SSH server will be used for authentication against the repository when the import or the export is
performed.

6.3.1. Export a JCR node

The following command will export the node in the repository of the portal/gadgets portal-system
container :portal

scp -P 2000 root@localhost:portal:portal-system:/production/app:gadgets gadgets.xml

The node will be exported as .app_gadgets.xml

Note that the portal container name is used for GateIn. If you do omit it, then the root container will
be used.

6.3.2. Import a JCR node

The following command will reimport the node:

scp -P 2000 gadgets.xml root@localhost:portal:portal-system:/production/

The exported file format use the JCR system view. You can get more information about that in the
JCR specification.

The SCP feature is experimental

Page 73 of 73

7
Hey, I want to contribute!

Drop me an email (see my @ on www.julienviet.com), any kind of help is welcome.

